Skip to main content
Log in

Transient Liquid Phase Sintering of Ni and Sn-58Bi on Microstructures and Mechanical Properties for Ni–Ni Bonding

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Transient liquid phase sintering (TLPS), which is a combined bonding technology of sintering and transient liquid phase bonding, is considered to be a promising sic. die attach material owing to its excellent mechanical properties and low cost. To prevent the oxidation problem, Ni is typically plated onto direct bonded copper and sic. chip. In this study, we investigated the Ni–Ni bonding by adapting TLPS method using Ni and Sn-58Bi. The bonding temperature and time were 220 °C and 60 min, respectively. In addition, the bonding atmosphere was maintained in air without bonding pressure. To confirm the bonding reliability, high-temperature storage test was conducted at 200 °C for 1000 h. With an increase in the remelting temperature to 271 °C, the bonding strength of the TLPS joint of 20 wt% Ni case was about 15 MPa. In addition, the bonding strength decreased by approximately 32% after the high-temperature storage test for 1000 h. In conclusion, Ni–Ni bonding was successfully achieved by the TLPS of Sn-58Bi with Ni.

Graphic Abstract

The high-heat endurance bonding between Ni to Ni was achieved by transient liquid phase sintering bonding using Ni and Sn-58Bi. By the sintering reaction between Ni, and the intermetallic reaction of Ni, Sn, and Bi, the remelting temperature increased from 139 to 271 °C. This bonding method can be applied in SiC die attachment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chin, H.S., Cheong, K.Y., Ismail, A.B.: A Review on Die Attach Materials for SiC-Based High-Temperature Power Devices: Metal. Mater. Trans. B 41(4), 824–832 (2010)

    Article  Google Scholar 

  2. Zhang, H., Chen, C., Nagao, S., Suganuma, K.: Thermal Fatigue Behavior of Silicon-Carbide-Doped Silver Microflake Sinter Joints for Die Attachment in Silicon/Silicon Carbide Power Devices. J. Electron. Mater. 46(2), 1055–1060 (2017)

    Article  CAS  Google Scholar 

  3. Neudeck, P.G., Okojie, R.S., Chen, L.Y.: High-temperature electronics a role for wide bandgap semiconductors. Proc. IEEE 90, 1065–1076 (2002)

    Article  Google Scholar 

  4. Tatsumi, K., Inagaki, M., Kamei, K., Lizuka, T., Narimatsu, H., Sato, N., Shimizu, K., Ueda, K., Imakire, A., Hikita, M., Kamimura, R., Sugiura, K., Tsuruta, K., Tsuruta, K.: Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 1316–1321: (2017)

  5. Soichi, S., Suganuma, K.: Low-Temperature and Low-Pressure Die Bonding Using Thin Ag-Flake and Ag-Particle Pastes for Power Devices. IEEE Trans. Compon. Packag. Manuf. Technol. 3(6), 923–929 (2013)

    Article  CAS  Google Scholar 

  6. Lu, G.Q., Mei, Y., Wang, M., Li, X.: Low-temperature Silver Sintering for Bonding 3D Power Modules. 2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D), 19: (2019)

  7. Hong, W.S., Kim, M.S., Oh, C., Joo, Y., Kim, Y., Hong, K.K.: Pressureless Silver Sintering of Silicon-Carbide Power Modules for Electric Vehicles. JOM. 72(2), 889–897 (2020)

    Article  CAS  Google Scholar 

  8. Yu, F., Hang, C., Zhao, M., Chen, H.: An interconnection method based on Sn-coated Ni core-shell powder preforms for high-temperature applications. J. Alloys Compd. 776, 791–797 (2019)

    Article  CAS  Google Scholar 

  9. Sharif, A., Gan, C.L., Chen, Z.: Transient liquid phase Ag-based solder technology forhigh-temperature packaging applications. J. Alloys Compd. 587, 365–368 (2014)

    Article  CAS  Google Scholar 

  10. Xiong, M., Zhang, L., Sun, L., He, P., Long, W.: Effect of CuZnAl particles addition on microstructure of Cu/Sn58Bi/Cu TLP bonding solder joints. Vacuum 167, 301–306 (2019)

    Article  CAS  Google Scholar 

  11. Tatsumi, H., Yamaguchi, H., Matsuda, T., Sano, T., Kashiba, Y., Hirose, A.: Deformation Behavior of Transient Liquid-Phase Sintered Cu-Solder-Resin Microstructure for Die-Attach. Appl. Sci. 9(17), 3476 (2019)

    Article  CAS  Google Scholar 

  12. Mokhtari, O., Nishikawa, H.: The shear strength of transient liquid phase bonded Sn–Bi solder joint with added Cu particles. Adv Powder Technol. 27(3), 1000–1005 (2016)

    Article  CAS  Google Scholar 

  13. Faiz, M.K., Yamamoto, T., Yoshida, M.: Sn-Bi added Ag-based transient liquid phase sintering for low temperature bonding. 2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D), 34: (2017)

  14. Min, K.D., Jung, K.H., Lee, C.J., Jeong, H., Jung, S.B.: Pressureless transient liquid phase sintering bonding in air using Ni and Sn–58Bi for high–temperature packaging applications. J. Mater. Sci.: Mater. Electron. 30(20), 18848–18857 (2019)

    CAS  Google Scholar 

  15. Feng, H., Huang, J., Peng, X., Lv, Z., Wang, Y., Yang, J., Chen, S., Zhao, X.: Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging. J. Electron. Mater. 47(8), 4642–4652 (2018)

    Article  CAS  Google Scholar 

  16. Feng, H., Huang, J., Yang, J., Zhou, S., Zhang, R., Chen, S.: A Transient Liquid Phase Sintering Bonding Process Using Nickel-Tin Mixed Powder for the New Generation of High-Temperature Power Devices. J. Electron. Mater. 46(7), 4152–4159 (2017)

    Article  CAS  Google Scholar 

  17. Feng, H., Huang, J., Yang, J., Zhou, S., Zhang, R., Wang, Y., Chen, S.: Investigation of Microstructural Evolution and Electrical Properties for Ni-Sn Transient Liquid-Phase Sintering Bonding. Electron. Mater. Lett. 13(6), 489–496 (2017)

    Article  CAS  Google Scholar 

  18. Chen, H.Y., Chen, C.: Kinetic study of the intermetallic compound formation between eutectic Sn–35Ag alloys and electroplated Ni metallization in flip-chip solder joints. J. Mater. Res. 27(8), 1169–1177 (2012)

    Article  CAS  Google Scholar 

  19. Sheikhi, R., Cho, J.: Growth kinetics of bismuth nickel intermetallics. J. Mater. Sci.: Mater. Electron. 29(22), 19034–19042 (2018)

    CAS  Google Scholar 

  20. Cho, J., Sheikhi, R., Mallampati, S., Yin, L., Shaddock, D.: Bismuth-Based Transient Liquid Phase (TLP) Bonding as High-Temperature Lead-Free Solder Alternatives. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 1553–1559: (2017)

  21. Jung, K.H., Min, K.D., Lee, C.J., Jung, S.B.: Pressureless die attach by transient liquid phase sintering of Cu nanoparticles and Sn-58Bi particles assisted by polyvinylpyrrolidone dispersant. J. Alloys Compd. 781, 657–663 (2019)

    Article  CAS  Google Scholar 

  22. Mokhtari, O.: A review: Formation of voids in solder joint during the transient liquid phase bonding process - Causes and solutions. Microelectron. Reliab. 98, 95–105 (2019)

    Article  CAS  Google Scholar 

  23. Zhang, L., Chen, M.h., Sun, L.: Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloys Compd. 786, 677–687 (2019)

    Article  Google Scholar 

  24. Chen, J., Yang, J., Zhang, Y., Yu, Z., Zhang, P.: Effect of substrates on the formation of Kirkendall voids in Sn/Cu joints. Weld. World. 63, 751–757 (2019)

    Article  CAS  Google Scholar 

  25. Chan, P.F., Lee, H., Wen, S.I., Hung, M.C., Chen, C.M., Dow, W.P.: Effect of Copper Grain Size on the Interfacial Microstructure of a Sn/Cu Joint. ACS Appl. Electron. Mater. (2020)

  26. Bao, Y., Wu, A., Shao, H., Zhao, Y., Liu, L., Zou, G.: Microstructural evolution and mechanical reliability of transient liquid phase sintered joint during thermal aging. J. Mater. Sci. 54, 765–776 (2019)

    Article  CAS  Google Scholar 

  27. Monlevade, E.F.D., Peng, W.: Failure Mechanisms and Crack Propagation Paths in Thermally Aged Pb-Free Solder Interconnects. J. Electron. Mater. 36(7), 783–797 (2007)

    Article  Google Scholar 

  28. Shao, H., Wu, A., Bao, Y., Zhao, Y., Zou, G., Liu, L.: Thermal reliability investigation of Ag-Sn TLP bonds for high-temperature power electronics application. Microelectron. Reliab. 91, 38–45 (2018)

    Article  CAS  Google Scholar 

  29. Huh, S.H., Kim, K.D., Kim, K.S., Jang, J.S.: A novel high-speed shear test for lead-free flip chip packages. Electron. Mater. Lett. 8(1), 59–64 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2019R1A6A1A03033215). This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20174030201800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Boo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1(Docx 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, K.D., Jung, KH., Lee, CJ. et al. Transient Liquid Phase Sintering of Ni and Sn-58Bi on Microstructures and Mechanical Properties for Ni–Ni Bonding. Electron. Mater. Lett. 16, 347–354 (2020). https://doi.org/10.1007/s13391-020-00221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00221-4

Keywords

Navigation