Skip to main content

Advertisement

Log in

Altered expression of fractalkine in HIV-1-infected astrocytes and consequences for the virus-related neurotoxicity

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

HIV-1 infection in the central nervous system (CNS) causes the release of neurotoxic products from infected cells which trigger extensive neuronal loss. Clinically, this results in HIV-1-associated neurocognitive disorders (HAND). However, the effects on neuroprotective factors in the brain remain poorly understood and understudied in this situation. HAND is a multifactorial process involving several players, and the complex cellular mechanisms have not been fully elucidated yet. In this study, we reported that HIV-1 infection of astrocytes limits their potential to express the protective chemokine fractalkine in response to an inflammatory environment. We next confirmed that this effect was not due to a default in its shedding from the cell surface. We then investigated the biological mechanism responsible for this reduced fractalkine expression and found that HIV-1 infection specifically blocks the interaction of transcription factor NF-κB on its promoter with no effect on other cytokines. Moreover, we demonstrated that fractalkine production in astrocytes is regulated in response to immune factors secreted by infected/activated microglia and macrophages. In contrast, we observed that conditioned media from these infected cells also trigger neuronal apoptosis. At last, we demonstrated a strong neuroprotective action of fractalkine on human neurons by reducing neuronal damages. Taken together, our results indicate new relevant interactions between HIV-1 and fractalkine signaling in the CNS. This study provides new information to broaden the understanding of HAND and possibly foresee new therapeutic strategies. Considering its neuro-protective functions, reducing its production from astrocytes could have important outcomes in chronic neuroinflammation and in HIV-1 neuropathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abassi M, Morawski BM, Nakigozi G, Nakasujja N, Kong X, Meya DB, Robertson K, Gray R, Wawer MJ, Sacktor N, Boulware DR (2017) ’Cerebrospinal fluid biomarkers and HIV-associated neurocognitive disorders in HIV-infected individuals in Rakai. Uganda’, J Neurovirol 23:369–375

    Article  CAS  Google Scholar 

  • Ancuta P, Moses A, Gabuzda D (2004) Transendothelial migration of CD16+ monocytes in response to fractalkine under constitutive and inflammatory conditions. Immunobiology 209:11–20

    Article  CAS  PubMed  Google Scholar 

  • Ancuta P, Wang J, Gabuzda D (2006) CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells. J Leukoc Biol 80:1156–1164

    Article  CAS  PubMed  Google Scholar 

  • Appelberg KS, Wallet MA, Taylor JP, Cash MN, Sleasman JW, Goodenow MM (2017) HIV-1 infection primes macrophages through STAT signaling to promote enhanced inflammation and viral replication. AIDS Res Hum Retroviruses 33:690–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahney J, von Bartheld CS (2018) The cellular composition and glia-neuron ratio in the spinal cord of a human and a nonhuman primate: comparison with other species and brain regions. Anat Rec (Hoboken) 301:697–710

    Article  Google Scholar 

  • Ballestas ME, Benveniste EN (1995) Interleukin 1-beta- and tumor necrosis factor-alpha-mediated regulation of ICAM-1 gene expression in astrocytes requires protein kinase C activity. Glia 14:267–278

    Article  CAS  PubMed  Google Scholar 

  • Baqui AA, Jabra-Rizk MA, Kelley JI, Zhang M, Falkler WA Jr, Meiller TF (2000) Enhanced interleukin-1beta, interleukin-6 and tumor necrosis factor-alpha production by LPS stimulated human monocytes isolated from HIV+ patients. Immunopharmacol Immunotoxicol 22:401–421

    Article  CAS  PubMed  Google Scholar 

  • Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ (2018) Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia 66:1363–1381

    Article  PubMed  Google Scholar 

  • Barboric M, Fujinaga K (2016) The two sides of Tat. Elife 5:e12686

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  CAS  PubMed  Google Scholar 

  • Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris) 154:816–829

    CAS  Google Scholar 

  • Bergamini A, Faggioli E, Bolacchi F, Gessani S, Cappannoli L, Uccella I, Demin F, Capozzi M, Cicconi R, Placido R, Vendetti S, Colizzi GM, Rocchi G (1999) Enhanced production of tumor necrosis factor-alpha and interleukin-6 due to prolonged response to lipopolysaccharide in human macrophages infected in vitro with human immunodeficiency virus type 1. J Infect Dis 179:832–842

    Article  CAS  PubMed  Google Scholar 

  • Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ (2014) Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4(+) T cells across an in vitro blood-brain barrier model. Virology 454–455:128–138

    Article  PubMed  CAS  Google Scholar 

  • Bhatt D, Ghosh S (2014) Regulation of the NF-kappaB-mediated transcription of inflammatory genes. Front Immunol 5:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhavsar PK, Sukkar MB, Khorasani N, Lee KY, Chung KF (2008) Glucocorticoid suppression of CX3CL1 (fractalkine) by reduced gene promoter recruitment of NF-kappaB. FASEB J 22:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Bounou S, Leclerc JE, Tremblay MJ (2002) Presence of host ICAM-1 in laboratory and clinical strains of human immunodeficiency virus type 1 increases virus infectivity and CD4(+)-T-cell depletion in human lymphoid tissue, a major site of replication in vivo. J Virol 76:1004–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JN, Kohler JJ, Coberley CR, Sleasman JW, Goodenow MM (2008) HIV-1 activates macrophages independent of Toll-like receptors. PLoS ONE 3:e3664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canki M, Thai JN, Chao W, Ghorpade A, Potash MJ, Volsky DJ (2001) Highly productive infection with pseudotyped human immunodeficiency virus type 1 (HIV-1) indicates no intracellular restrictions to HIV-1 replication in primary human astrocytes. J Virol 75:7925–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantin R, Fortin JF, Lamontagne G, Tremblay M (1997) The acquisition of host-derived major histocompatibility complex class II glycoproteins by human immunodeficiency virus type 1 accelerates the process of virus entry and infection in human T-lymphoid cells. Blood 90:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Cantres-Rosario YM, Ortiz-Rodriguez SC, Santos-Figueroa AG, Plaud M, Negron K, Cotto B, Langford D, Melendez LM (2019) HIV infection induces extracellular cathepsin B uptake and damage to neurons. Sci Rep 9:8006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE (2011) HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 286:41125–41134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Mehla R, Vijayakumar TS, Handy I (2014) Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology 456–457:1–19

    Article  PubMed  CAS  Google Scholar 

  • Choi SS, Lee HJ, Lim I, Satoh J, Kim SU (2014) Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9:e92325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, Thompson KA, Gabuzda D, McArthur JC, Pardo CA, Wesselingh SL (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 12:146–152

    Article  PubMed  CAS  Google Scholar 

  • Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66:253–258

    Article  PubMed  Google Scholar 

  • Clark E, Nava B, Caputi M (2017) Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget 8:27569–27581

    Article  PubMed  PubMed Central  Google Scholar 

  • Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–986

    Article  PubMed  PubMed Central  Google Scholar 

  • Combadiere C, Salzwedel K, Smith ED, Tiffany HL, Berger EA, Murphy PM (1998) Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273:23799–23804

    Article  CAS  PubMed  Google Scholar 

  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95:3117–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cota M, Kleinschmidt A, Ceccherini-Silberstein F, Aloisi F, Mengozzi M, Mantovani A, Brack-Werner R, Poli G (2000) Upregulated expression of interleukin-8, RANTES and chemokine receptors in human astrocytic cells infected with HIV-1. J Neurovirol 6:75–83

    Article  CAS  PubMed  Google Scholar 

  • Dahabieh MS, Ooms M, Simon V, Sadowski I (2013) A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection. J Virol 87:4716–4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deiva K, Geeraerts T, Salim H, Leclerc P, Hery C, Hugel B, Freyssinet JM, Tardieu M (2004) Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur J Neurosci 20:3222–3232

    Article  PubMed  Google Scholar 

  • Dhamija N, Choudhary D, Ladha JS, Pillai B, Mitra D (2015) Tat predominantly associates with host promoter elements in HIV-1-infected T-cells - regulatory basis of transcriptional repression of c-Rel. FEBS J 282:595–610

    Article  CAS  PubMed  Google Scholar 

  • Elbirt D, Mahlab-Guri K, Bezalel-Rosenberg S, Gill H, Attali M, Asher I (2015) HIV-associated neurocognitive disorders (HAND). Isr Med Assoc J 17:54–59

    PubMed  Google Scholar 

  • Endsley MA, Somasunderam AD, Li G, Oezguen N, Thiviyanathan V, Murray JL, Rubin DH, Hodge TW, O’Brien WA, Lewis B, Ferguson MR (2014) Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain. Virology 454–455:60–66

    Article  PubMed  CAS  Google Scholar 

  • Erichsen D, Lopez AL, Peng H, Niemann D, Williams C, Bauer M, Morgello S, Cotter RL, Ryan LA, Ghorpade A, Gendelman HE, Zheng J (2003) Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia. J Neuroimmunol 138:144–155

    Article  CAS  PubMed  Google Scholar 

  • Esser R, Glienke W, Andreesen R, Unger RE, Kreutz M, Rubsamen-Waigmann H, von Briesen H (1998) Individual cell analysis of the cytokine repertoire in human immunodeficiency virus-1-infected monocytes/macrophages by a combination of immunocytochemistry and in situ hybridization. Blood 91:4752–4760

    Article  CAS  PubMed  Google Scholar 

  • Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debre P, Theodorou I, Combadiere C (2000) Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 287:2274–2277

    Article  CAS  PubMed  Google Scholar 

  • Friedrich BM, Murray JL, Li G, Sheng J, Hodge TW, Rubin DH, O’Brien WA, Ferguson MR (2011) A functional role for ADAM10 in human immunodeficiency virus type-1 replication. Retrovirology 8:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan AM, Butoi E, Manea A, Pirvulescu MM, Stan D, Simion V, Calin M, Simionescu M, Manduteanu I (2014) Functional analysis of the fractalkine gene promoter in human aortic smooth muscle cells exposed to proinflammatory conditions. FEBS J 281:3869–3881

    Article  CAS  PubMed  Google Scholar 

  • Gan HX, Ruef C, Hall BF, Tobin E, Remold HG, Mellors JW (1991) Interleukin-6 expression in primary macrophages infected with human immunodeficiency virus-1 (HIV-1). AIDS Res Hum Retroviruses 7:671–679

    Article  CAS  PubMed  Google Scholar 

  • Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, Soares N, Blackburn JM (2017) 'Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells', Proteomics, 17.

  • Garin A, Tarantino N, Faure S, Daoudi M, Lecureuil C, Bourdais A, Debre P, Deterre P, Combadiere C (2003) Two novel fully functional isoforms of CX3CR1 are potent HIV coreceptors. J Immunol 171:5305–5312

    Article  CAS  PubMed  Google Scholar 

  • Gendelman HE, Lipton SA, Tardieu M, Bukrinsky MI, Nottet HS (1994) The neuropathogenesis of HIV-1 infection. J Leukoc Biol 56:389–398

    Article  CAS  PubMed  Google Scholar 

  • Giraud SN, Caron CM, Pham-Dinh D, Kitabgi P, Nicot AB (2010) Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci U S A 107:8416–8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gras G, Kaul M (2010) Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology 7:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao HN, Lyman WD (1999) HIV infection of fetal human astrocytes: the potential role of a receptor-mediated endocytic pathway. Brain Res 823:24–32

    Article  CAS  PubMed  Google Scholar 

  • Hatori K, Nagai A, Heisel R, Ryu JK, Kim SU (2002) Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res 69:418–426

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hurst LA, Bunning RA, Sharrack B, Woodroofe MN (2012) siRNA knockdown of ADAM-10, but not ADAM-17, significantly reduces fractalkine shedding following pro-inflammatory cytokine treatment in a human adult brain endothelial cell line. Neurosci Lett 521:52–56

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Matsumiya T, Fujimoto K, Okamoto K, Cui X, Ohtaki U, Hidemi Y, Satoh K (2000) Interferon-gamma stimulates the expression of CX3CL1/fractalkine in cultured human endothelial cells. Tohoku J Exp Med 192:127–139

    Article  CAS  PubMed  Google Scholar 

  • Janelle V, Brassard F, Lapierre P, Lamarre A, Poliquin L (2011) Mutations in the glycoprotein of vesicular stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy. J Virol 85:6513–6520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  CAS  PubMed  Google Scholar 

  • Khiati A, Chaloin O, Muller S, Tardieu M, Horellou P (2010) Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent. J Neurovirol 16:150–167

    Article  CAS  PubMed  Google Scholar 

  • Khorooshi R, Babcock AA, Owens T (2008) NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury. J Immunol 181:7284–7291

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Takahashi T, Lee JY, Hwang GW, Naganuma A (2012) Methylmercury induces CCL2 expression through activation of NF-kappaB in human 1321N1 astrocytes. J Toxicol Sci 37:1275–1278

    Article  CAS  PubMed  Google Scholar 

  • Lauro C, Catalano M, Trettel F, Limatola C (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann N Y Acad Sci 1351:141–148

    Article  CAS  PubMed  Google Scholar 

  • Lehmann MH, Masanetz S, Kramer S, Erfle V (2006) HIV-1 Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner. J Cell Sci 119:4520–4530

    Article  CAS  PubMed  Google Scholar 

  • Li GH, Anderson C, Jaeger L, Do T, Major EO, Nath A (2015) Cell-to-cell contact facilitates HIV transmission from lymphocytes to astrocytes via CXCR4. AIDS 29:755–766

    Article  PubMed  PubMed Central  Google Scholar 

  • Li GH, Maric D, Major EO, Nath A (2020) 'Productive HIV infection in astrocytes can be established via a non-classical mechanism', AIDS.

  • Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL (2010) HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol 5:294–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Qiao L, Zhang Y, Zang Y, Shi Y, Liu K, Zhang X, Lu X, Yuan L, Su B, Zhang T, Wu H, Chen D (2017) ASPP2 plays a dual role in gp120-induced autophagy and apoptosis of neuroblastoma cells. Front Neurosci 11:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Hundhausen C, Lambert MH, Broadway N, Andrews RC, Bickett DM, Leesnitzer MA, Becherer JD (2005) Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 8:161–171

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Chu SF, Zhang Z, Xia CY, Chen NH (2019) Fractalkine/CX3CR1 is involved in the cross-talk between neuron and glia in neurological diseases. Brain Res Bull 146:12–21

    Article  CAS  PubMed  Google Scholar 

  • Luo X, He JJ (2015) Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes. J Neurovirol 21:66–80

    Article  CAS  PubMed  Google Scholar 

  • Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB (1999) Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 163:1628–1635

    Article  CAS  PubMed  Google Scholar 

  • Meeker RB, Poulton W, Markovic-Plese S, Hall C, Robertson K (2011) Protein changes in CSF of HIV-infected patients: evidence for loss of neuroprotection. J Neurovirol 17:258–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95:14500–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 97:8075–8080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosoian A, Zhang L, Hong F, Cunyat F, Rahman A, Bhalla R, Panchal A, Saiman Y, Fiel MI, Florman S, Roayaie S, Schwartz M, Branch A, Stevenson M, Bansal MB (2017) Frontline Science: HIV infection of Kupffer cells results in an amplified proinflammatory response to LPS. J Leukoc Biol 101:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Muratori C, Mangino G, Affabris E, Federico M (2010) Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNFalpha in macrophages. Glia 58:1893–1904

    Article  PubMed  Google Scholar 

  • Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198

    Article  CAS  PubMed  Google Scholar 

  • Nevo I, Sagi-Assif O, Meshel T, Ben-Baruch A, Johrer K, Greil R, Trejo LE, Kharenko O, Feinmesser M, Yron I, Witz IP (2009) The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Lett 273:127–139

    Article  CAS  PubMed  Google Scholar 

  • Nikolic J, Belot L, Raux H, Legrand P, GaudinA. Albertini A. Y (2018) Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat Commun 9:1029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuovo GJ, Alfieri ML (1996) AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines. Mol Med 2:358–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan SA, Gasparini F, Mir AK, Dev KK (2016) Fractalkine shedding is mediated by p38 and the ADAM10 protease under pro-inflammatory conditions in human astrocytes. J Neuroinflammation 13:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh JW, Schwiebert LM, Benveniste EN (1999) Cytokine regulation of CC and CXC chemokine expression by human astrocytes. J Neurovirol 5:82–94

    Article  CAS  PubMed  Google Scholar 

  • Pereira CF, Middel J, Jansen G, Verhoef J, Nottet HS (2001) Enhanced expression of fractalkine in HIV-1 associated dementia. J Neuroimmunol 115:168–175

    Article  CAS  PubMed  Google Scholar 

  • Peron R, Vatanabe IP, Manzine PR, Camins A, Cominetti MR (2018) 'Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer's Disease Treatment', Pharmaceuticals (Basel), 11.

  • Proust A, Barat C, Leboeuf M, Drouin J, Tremblay MJ (2017) Contrasting effect of the latency-reversing agents bryostatin-1 and JQ1 on astrocyte-mediated neuroinflammation and brain neutrophil invasion. J Neuroinflammation 14:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rho MB, Wesselingh S, Glass JD, McArthur JC, Choi S, Griffin J, Tyor WR (1995) A potential role for interferon-alpha in the pathogenesis of HIV-associated dementia. Brain Behav Immun 9:366–377

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Franco EJ, Cantres-Rosario YM, Plaud-Valentin M, Romeu R, Rodriguez Y, Skolasky R, Melendez V, Cadilla CL, Melendez LM (2012) Dysregulation of macrophage-secreted cathepsin B contributes to HIV-1-linked neuronal apoptosis. PLoS ONE 7:e36571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saloner R, Cysique LA (2017) HIV-associated neurocognitive disorders: a global perspective. J Int Neuropsychol Soc 23:860–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanmarti M, Ibanez L, Huertas S, Badenes D, Dalmau D, Slevin M, Krupinski J, Popa-Wagner A, Jaen A (2014) HIV-associated neurocognitive disorders. J Mol Psychiatry 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Seilhean D, Dzia-Lepfoundzou A, Sazdovitch V, Cannella B, Raine CS, Katlama C, Bricaire F, Duyckaerts C, Hauw JJ (1997) Astrocytic adhesion molecules are increased in HIV-1-associated cognitive/motor complex. Neuropathol Appl Neurobiol 23:83–92

    Article  CAS  PubMed  Google Scholar 

  • Sheridan GK, Murphy KJ (2013) Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 3:130181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shipley MM, Mangold CA, Szpara ML (2016) 'Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line'. J Vis Exp 53193.

  • Shrikant P, Benos DJ, Tang LP, Benveniste EN (1996) ’HIV glycoprotein 120 enhances intercellular adhesion molecule-1 gene expression in glial cells. Involvement of Janus kinase/signal transducer and activator of transcription and protein kinase C signaling pathways’, J Immunol 156:1307–1314

    CAS  Google Scholar 

  • Smail RC, Brew BJ (2018) HIV-associated neurocognitive disorder. Handb Clin Neurol 152:75–97

    Article  PubMed  Google Scholar 

  • Sokolowski JD, Chabanon-Hicks CN, Han CZ, Heffron DS, Mandell JW (2014) Fractalkine is a “find-me” signal released by neurons undergoing ethanol-induced apoptosis. Front Cell Neurosci 8:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Sopper S, Demuth M, Stahl-Hennig C, Hunsmann G, Plesker R, Coulibaly C, Czub S, Ceska M, Koutsilieri E, Riederer P, Brinkmann R, Katz M, ter Meulen V (1996) The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey. Virology 220:320–329

    Article  CAS  PubMed  Google Scholar 

  • Sporer B, Kastenbauer S, Koedel U, Arendt G, Pfister HW (2003) Increased intrathecal release of soluble fractalkine in HIV-infected patients. AIDS Res Hum Retroviruses 19:111–116

    Article  CAS  PubMed  Google Scholar 

  • Suarez H, Rocha-Perugini V, Alvarez S, Yanez-Mo M (2018) Tetraspanins, another piece in the HIV-1 replication puzzle. Front Immunol 9:1811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugimoto T, Morioka N, Zhang FF, Sato K, Abe H, Hisaoka-Nakashima K, Nakata Y (2014) Clock gene Per1 regulates the production of CCL2 and interleukin-6 through p38, JNK1 and NF-kappaB activation in spinal astrocytes. Mol Cell Neurosci 59:37–46

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, El-Hage N, Zou S, Hahn YK, Sorrell ME, Sturgill JL, Conrad DH, Knapp PE, Hauser KF (2011) Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Mol Neurodegener 6:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatro ET, Soontornniyomkij B, Letendre SL, Achim CL (2014) Cytokine secretion from brain macrophages infected with human immunodeficiency virus in vitro and treated with raltegravir. BMC Infect Dis 14:386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thali M (2009) The roles of tetraspanins in HIV-1 replication. Curr Top Microbiol Immunol 339:85–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Erdmann N, Zhao J, Cao Z, Peng H, Zheng J (2008) HIV-infected macrophages mediate neuronal apoptosis through mitochondrial glutaminase. J Neurochem 105:994–1005

    Article  CAS  PubMed  Google Scholar 

  • Tong N, Perry SW, Zhang Q, James HJ, Guo H, Brooks A, Bal H, Kinnear SA, Fine S, Epstein LG, Dairaghi D, Schall TJ, Gendelman HE, Dewhurst S, Sharer LR, Gelbard HA (2000) Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol 164:1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Trillo-Pazos G, Diamanturos A, Rislove L, Menza T, Chao W, Belem P, Sadiq S, Morgello S, Sharer L, Volsky DJ (2003) Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 13:144–154

    Article  CAS  PubMed  Google Scholar 

  • von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524:3865–3895

    Article  Google Scholar 

  • Williams DW, Veenstra M, Gaskill PJ, Morgello S, Calderon TM, Berman JW (2014) Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res 12:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodman SE, Benveniste EN, Nath A, Berman JW (1999) Human immunodeficiency virus type 1 TAT protein induces adhesion molecule expression in astrocytes. J Neurovirol 5:678–684

    Article  CAS  PubMed  Google Scholar 

  • Xing HQ, Hayakawa H, Izumo K, Kubota R, Gelpi E, Budka H, Izumo S (2009) In vivo expression of proinflammatory cytokines in HIV encephalitis: an analysis of 11 autopsy cases. Neuropathology 29:433–442

    Article  PubMed  Google Scholar 

  • Xu Y, Kulkosky J, Acheampong E, Nunnari G, Sullivan J, Pomerantz RJ (2004) HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy. Proc Natl Acad Sci U S A 101:7070–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Imaizumi T, Fujimoto K, Matsuo N, Kimura K, Cui X, Matsumiya T, Tanji K, Shibata T, Tamo W, Kumagai M, Satoh K (2001) Synergistic stimulation, by tumor necrosis factor-alpha and interferon-gamma, of fractalkine expression in human astrocytes. Neurosci Lett 303:132–136

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Narasipura SD, Richards MH, Hu XT, Yamamoto B, Al-Harthi L (2017) HIV and drug abuse mediate astrocyte senescence in a beta-catenin-dependent manner leading to neuronal toxicity. Aging Cell 16:956–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanin V, Delbue S, Marcuzzi A, Tavazzi E, Del Savio R, Crovella S, Marchioni E, Ferrante P, Comar M (2012) Specific protein profile in cerebrospinal fluid from HIV-1-positive cART-treated patients affected by neurological disorders. J Neurovirol 18:416–422

    Article  CAS  PubMed  Google Scholar 

  • Zayyad Z, Spudich S (2015) Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12:16–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng JC, Huang Y, Tang K, Cui M, Niemann D, Lopez A, Morgello S, Chen S (2008) HIV-1-infected and/or immune-activated macrophages regulate astrocyte CXCL8 production through IL-1beta and TNF-alpha: involvement of mitogen-activated protein kinases and protein kinase R. J Neuroimmunol 200:100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zink MC, Coleman GD, Mankowski JL, Adams RJ, Tarwater PM, Fox K, Clements JE (2001) Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis 184:1015–1021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to the technical support of Caroline Côté and the Bioimaging platform of the Infectious Disease Research Centre that was funded by an equipment and infrastructure grant from the Canadian Foundation Innovation. The authors also want to thank the medical assistance of the Clinique de Planification des Naissances of the Hôpital Saint-François d’Assise.

Funding

This work was supported by funds allocated to M.J.T. from the Open Operating Grant Program of the Canadian Institutes of Health Research (CIHR) (grant no. MOP-133696). MJT is the recipient of the Tier 1 CIHR-Canada Research Chair in Human Immunoretrovirology.

Author information

Authors and Affiliations

Authors

Contributions

VS contributed to design the research study, conducted all the experiments, performed statistical analysis, prepared tables and figures, and wrote the manuscript; CB helped to design the experiments, data interpretation, and preparation of the manuscript. MJT supervised the study, helped to conceive the experiments, and reviewed and edited the manuscript. MTG, FV, and ML provided the fetal cerebral tissues; DG participated in the ChIP assays; all authors read and approved the final manuscript for publication.

Corresponding author

Correspondence to Michel J. Tremblay.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Bioethics Committee at the Centre Hospitalier Universitaire de Québec-Université Laval, CHUL building (#B14-04-1973). Human fetal brain tissues from 16 to 22 weeks aborted fetuses were directly obtained from Hôpital Saint-François d’Assise or the CHUL with the written informed consent of the adult patient. Human blood samples from anonymous healthy volunteers were obtained from the CHUL with the written informed consent of each participant.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sénécal, V., Barat, C., Gagnon, MT. et al. Altered expression of fractalkine in HIV-1-infected astrocytes and consequences for the virus-related neurotoxicity. J. Neurovirol. 27, 279–301 (2021). https://doi.org/10.1007/s13365-021-00955-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-021-00955-3

Keywords

Navigation