Skip to main content
Log in

Mung bean (Vigna radiata) cultivars mediated oviposition preference and development of Callosobruchus chinensis (Coleoptera: Chrysomelidae: Bruchinae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

The Azuki bean weevil, Callosobruchus chinensis (L.), is a destructive pest of stored mung bean [Vigna radiata (L.) Wilczek] as well as other leguminous seeds. The development of resistant seeds to manage this pest is of current great interest to plant breeders. In this study, we investigated the oviposition preference and development of C. chinensis on two susceptible mung bean cultivars (Seonhwa and Gyeongseon) and one previously reported resistant cultivar (Jangan), compared to the susceptible cowpea (Vigna unguiculata L.), cultivar (Yeonbun) using both multiple-choice and no-choice tests. In addition, the development of C. chinensis was also examined at four constant temperatures (20, 25, 30, and 35 °C). Both tests found cowpea to be the most suitable seed for oviposition. Total developmental time from oviposition to adult emergence ranged from 27.01 to 38.2 days, being shortest on cowpea and longest on the mung bean, cv. Jangan. However, no successful development of C. chinensis larvae on mung bean, cv. Jangan, occurred at any temperature. The highest rate of adult emergence and the longest adult longevity both occurred on cowpea and certain mung bean cultivars (Seonhwa and Gyeongseon), with the dramatic exception of cv. Jangan. These results suggest that the higher preference and performance of C. chinensis on cowpea (3.3 egg/seed) and least on mung bean, cv. Jangan (0.4 egg/seed). This information may facilitate the exploration of resistant genetic materials and chemicals associated with seeds for successful breeding. Further studies should examine the chemicals associated with mung bean cultivars and its resistant mechanism to develop a control method against bruchines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amin MN, Hossain MA, Roy KC (2004) Effects of moisture content on some physical properties of lentil seeds. J Food Eng 65:83–87

    Article  Google Scholar 

  • Bae SD, Kim HJ, Yoon YN, Park ST, Choi BR, Jung JK (2009) Effects of a mung bean cultivar, Jangannogdu on nymphal development, adult longevity and oviposition of soybean stinkbugs. Kor J Appl Entomol 48:311–318

    Article  Google Scholar 

  • Bellows TS Jr (1982) Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera: Bruchidae). J Anim Ecol 51:263–287

    Article  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host–plant selection by phytophagous insects. Chapman and Hall, New York

    Book  Google Scholar 

  • Bhattacharya B, Banerjee TC (2001) Factors affecting egg-laying behavior and fecundity of Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) infesting stored pulses. Orient Insects 35:373–386

    Article  Google Scholar 

  • Boydas MG, Sayinci B, Gozlekci S, Oztürk I, Ercisli S (2012) Basic physical properties of fruits in loquat (Eriobotrya japonica (Thunb. Lindl.) cultivars and genotypes determined by both classical method and digital image processing. Afr J Agric Res 7:4171–4181

    Google Scholar 

  • Brewer IN, Horber E (1983) Evaluating resistance to Callosobruchus chinensis L. in different seed legumes. In: Proceedings of 3rd international working conference on stored products entomology, K.S.U., Manhattan, Kansas, Oct 23–28, 1983, pp 435–443

  • Campbell A, Singh NB, Singh RN (1976) Bioenergetics of the granary weevil, Sitophilus granaries (L.) (Coleoptera: Curculionidae). Can J Zool 54:786–798

    Article  Google Scholar 

  • Center TD, Johnson CD (1974) Coevolution of some seed beetles (Coleoptera: Bruchidae) and their hosts. Ecology 55:1096–1103

    Article  Google Scholar 

  • Chan L, Chen CS, Horng SB (2005) Characterization of resistance to Callosobruchus maculatus (Coleoptera: Bruchidae) in mungbean variety VC6089A and its resistance-associated protein VrD1. J Econ Entomol 98:1369–1373

    Article  Google Scholar 

  • Chandra G (2006) Callosobruchus chinensis the pulse beetle cowpea bruchid. http://www.iaszoology.com/callosobruchus-chinensis/. Accessed Oct 2016

  • Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50:7258–7263

    Article  CAS  PubMed  Google Scholar 

  • Chiu YJ, Messina FJ (1994) Effect of experience on host preference in Callosobruchus maculatus (Coleoptera: Bruchidae): Variability among populations. J Insect Behav 7:503–515

    Article  Google Scholar 

  • Cope JM, Fox CW (2003) Oviposition decisions in the seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae): effects of seed size on superparasitism. J Stored Prod Res 39:355–365

    Article  Google Scholar 

  • Coyle DR, Clark KE, Raffa KF, Johnson SN (2011) Prior host feeding experience influences ovipositional but not feeding preference in a polyphagous insect herbivore. Entomol Exp Appl 138:137–145

    Article  Google Scholar 

  • Credland PF, Wright AW (1988) The effect of artificial substrates and host extracts on oviposition by Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 24:157–164

    Article  Google Scholar 

  • Credland PE, Wright AW (1990) Oviposition deterrents of Callosobruchus maculatus (Coleoptera: Bruchidae). Physiol Entomol 15:285–298

    Article  Google Scholar 

  • de Sa LF, Wermelinger TT, da Ribeiro ES, de Gravina GA, Fernandes KV, Xavier-Filho J, Venancio TM, Rezende GL, Oliveira AEA (2014) Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). J Insect Physiol 60:50–57

    Article  PubMed  Google Scholar 

  • Dobie P (1981) The use of resistant varieties of cowpeas (Vigna unguiculata) to reduce losses due to post-harvest attack by Callosobruchus maculatus. In: Labeyrie V (ed) Series Entomologica, vol 19. Junk Publishers, The Hague, Dr. W, pp 182–192

    Google Scholar 

  • Ercisli S, Sayinci B, Kara M, Yildiz C, Ozturk I (2012) Determination of size and shape features of walnut (Juglans regia L.) cultivars using ımage processing. Scientia Horti 133:47–55

    Article  Google Scholar 

  • Fıratlıgil-Durmuş E, Šárka E, Bubník Z, Schejbal M, Kadlec P (2010) Size properties of legume seeds of different varieties using image analysis. J Food Eng 99:445–451

    Article  Google Scholar 

  • Fujii K (1968) Studies on interspecies competition between the azuki bean weevil and the southern cowpea weevil. III. Some characteristics of strains of two species. Res Popul Ecol 10:87–98

    Article  Google Scholar 

  • Fujii K, Miyazaki S (1987) Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) and its relationship with cytogenetic classification. Appl Entomol Zool 22:229–230

    Article  Google Scholar 

  • Fujii K, Ishimoto M, Kitamura K (1989) Patterns of resistance to bean weevils (Bruchidae) in Vigna radiata-mungo-sublobata complex inform the breeding of new resistant varieties. Appl Entomol Zool 24:126–132

    Article  Google Scholar 

  • Gatehouse AMR, Minney BH, Dobie P, Hilder V (1990) Biochemical resistance to bruchid attack in legume seed; investigation and exploitation. In: Fujii K, Gatehouse AMR, Johnson CD, Mitchel R, Yoshida T (eds) Bruchids and legumes: economics, ecology and coevolution. Kluwer Academic Publishers, Dordrecht, pp 241–256

    Chapter  Google Scholar 

  • Girish GK, Singh K, Krishnamurthy K (1974) Studies on the oviposition and development of Callosobruchus maculatus (Feb.) on various stored pulses. Bull Grain Tech 12:113–115

    Google Scholar 

  • Gupta DS, Mishra RC (1970) Further studies on the relative resistance of some important varieties of Bengal gram, Cicer arietinum L. to pulse beetle, Callosobruchus chinensis (L.). Bull Grain Tech 8:14–17

    Google Scholar 

  • Heisswolf A, Obermaier E, Poethke HJ (2005) Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol Entomol 30:299–306

    Article  Google Scholar 

  • Hoffman GD, Rao S (2011) Oviposition site selection on oats: the effect of plant architecture, plant and leaf age, tissue toughness, and hardness on cereal leaf beetle, Oulema melanopus. Entomol Exp Appl 141:232–244

    Article  Google Scholar 

  • Hong MG, Kim KH, Ku JH, Jeong JK, Seo MJ, Park CH, Kim YH, Kim HS, Kim YK, Baek SH, Kim DY, Park SK, Kim SL, Kim SL, Moon JK (2015) Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Plant Breed Biotech 3:39–46

    Article  Google Scholar 

  • Horber E (1983) Principles, problems, progress and potential inn host resistance to stored grain insects. In: Proceedings of the 3rd international working conference on stored products entomology, K.S.U., Manhattan, Kansas, Oct 2328, 1983, 391–417

  • Horton DR, Capinera JL, Chapman PL (1988) Local differences in host use between two populations of the Colorado potato beetle. Ecology 69:823–831

    Article  Google Scholar 

  • Howard JJJ, Bernays EA (1991) Effects of experience on palatability hierarchies of novel plants in the polyphagous grasshopper Schistocerca Americana. Oecologia 87:424–428

    Article  PubMed  Google Scholar 

  • Howe RW, Currie JE (1964) Some laboratory observations on the rates of development, mortality, and oviposition of several species of Bruchidae breeding in stored pulses. Bull Entomol Res 55:437–477

    Article  Google Scholar 

  • Hu F, Zhang GN, Wang JJ (2009) Scanning electron microscope studies of antennal sensilla of bruchid beetles, Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Micron 40:320–326

    Article  PubMed  Google Scholar 

  • Huignard J, Leroi B, Alzouma I, Germain JF (1985) Oviposition and development of Bruchidius atrolineatus and Callosobruchus maculatus in Vigna unguiculata cultures in Niger. Insect Sci Appl 6:691–699

    Google Scholar 

  • Janzen DH (1977) How southern cowpea weevil larvae (Bruchidae: Callosobruchus maculatus) die on nonhost seeds. Ecology 58:921–927

    Article  Google Scholar 

  • Janzen DH, Juster HB, Liener IE (1976) Insecticidal action of the phytohemagglutinin in black beans on a bruchid beetle. Science 192:795–796

    Article  CAS  PubMed  Google Scholar 

  • Kaga A, Teraishi M, Iijima N, Sugawara F, Ishimoto M (2000) Progresses in identification of the bruchid resistance gene in mungbean (Vigna radiata (L.). In: Abstract in plant Animal genome VIII Conference, Town and Country Hotel, San Diego, CA

  • Kanawde LR, Bhosale BW, Kadam MS (1990) Effects of moisture content on certain selected physical properties of pulse seeds. J Maharastra Agric Univ 15:60–62

    Google Scholar 

  • Kara M, Saynci B, Elkoca E, Ozturk I, Ozmen TB (2013) Seed size and shape analysis of registered common bean (Phaseolus vulgaris L.) cultivars in Turkey using digital photography. J Agric Sci 19:219–234

    Google Scholar 

  • Kashiwaba K, Tomooka N, Kaga A, Han OK, Vaughan DA (2003) Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera: Bruchidae) in cultivated rice bean (Vigna umbellata). J Econ Entomol 96:207–213

    Article  CAS  PubMed  Google Scholar 

  • Khamala CPM (1978) Pests of grain legumes and their control in Kenya. In: Singh SR, van Emden HF, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic Press, London, pp 124–134

    Google Scholar 

  • Kim KC, Choi HS (1987) Effects of temperature on the oviposition, feeding and emergence of the azuki bean weevil (Callosobruchus chinensis L.) in the stored beans. Kor J Plant Prot 26:71–81

    Google Scholar 

  • Kitamura K, Ishimoto M, Sawa M (1988) Inheritance of resistance to infestation with azuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jpn J Breed 38:459–464

    Article  Google Scholar 

  • Lambrides CJ, Imrie BC (2000) Susceptibility of mungbean varieties to the bruchid species Callosobruchus maculatus (F.), C. phasroli (Gyll.), C. chinensis (L.), and Acabthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae). Aust J Agric Res 51:85–89

    Article  Google Scholar 

  • Maharjan R, Ahn JJ, Park CG, Yoon YN, Jang Y, Kang HW, Bae SD (2017) Effects of temperature on development of the azuki bean weevil, Callosobruchus chinensis (Coleoptera: Bruchidae) on two leguminous seeds. J Stored Prod Res 72:90–99

    Article  Google Scholar 

  • Mainali BP, Kim HJ, Park CG, Kim JH, Yoon YN, Oh IS, Bae SD (2015a) Oviposition preference and development of azuki bean weevil, Callosobruchus chinensis, on five different leguminous seeds. J Stored Prod Res 61:97–101

    Article  Google Scholar 

  • Mainali BP, Kim HJ, Park CG, Yoon YN, Lee YH, Park IH, Kang HW, Bae SD (2015b) Interactive effects of temperature and relative humidity on oviposition and development of Callosobruchus chinensis (L.) on azuki bean. J Stored Prod Res 63:47–50

    Article  Google Scholar 

  • Malik BA (1994) Grain legumes. National Book Foundation, Islamabad, pp 227–326

    Google Scholar 

  • Mangel M (1989) Evolution of host selection in parasitoids: does the state of the parasitoids matter? Am Nat 133:688–705

    Article  Google Scholar 

  • McGinley MA, Charnov EL (1988) Multiple resources and the optimal balance between size and number of offspring. Evol Ecol 2:77–84

    Article  Google Scholar 

  • McGuire JU, Crandall BS (1967) Survey of insect pests and plant diseases of selected food crops of Mexico, Central America and Panama. International Agriculture Development Service, Agricultural Research Service, US Department of Agriculture, Washington, DC, USA, p 157

  • Messina FJ, Barmore JL, Renwick JAA (1987) Oviposition deterrent from eggs of Callosobruchus maculatus: spacing mechanism or artifact? J Chem Ecol 13:219–226

    Article  CAS  PubMed  Google Scholar 

  • Mitchell R (1990) Behavioral ecology of Callosobruchus maculatus. In: Fujii K, Gatehouse MR, Johnson CD, Mitchell R, Yoshida T (eds) Bruchids and legumes: economics, ecology and coevolution. Kluwer Academic Publishers, Dordrecht, pp 317–330

    Chapter  Google Scholar 

  • Nahdy MS (1994) Bean sieving, a possible control measure for the dried bean beetles, Acabthoscelides obtectus (Say.) (Coleoptera: Bruchidae). J Stored Prod Res 30:65–69

    Article  Google Scholar 

  • Nakamura H (1969) The effect of density on populations in Callosobruchus chinensis L. from different localities. Jpn J Ecol 19:92–97

    Google Scholar 

  • Nwanze KF, Horber E (1976) Seed coats of cowpeas affect oviposition and larval development of Callosobruchus maculatus. Environ Entomol 5:213–218

    Article  Google Scholar 

  • Nwanze KF, Horber E, Pitts CW (1975) Evidence for ovipositional preference of Callosobruchus maculatus for cowpea varieties. Environ Entomol 4:409–412

    Article  Google Scholar 

  • Panizzi AR (1987) Nutritional ecology of seed-sucking insects of soybean and their management. Mem Ins Oswaldo Cruz Intern Symp Insects 82:161–175

    Article  Google Scholar 

  • Papaj DR, Prokopy RJ (1989) Ecological and evolutionary aspects of learning in phytophagous insects. Annu Rev Entomol 34:315–350

    Article  Google Scholar 

  • Rees D (2004) Insects of stored products. CSIRO Publishing, Canberra

    Google Scholar 

  • SAS Institute Inc (2000) SAS user’s guide: statistics. Cary, N.C.

    Google Scholar 

  • Sayinci B, Ercisli S, Ozturk I, Eryilmaz Z, Demir B (2012) Determination of size and shape in the ‘Moro’ blood orange and ‘Valencia’ sweet orange cultivar and its mutants using image processing. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40:234–242

    Google Scholar 

  • Schoonhoven AV (1976) Pests of stored beans and their economic importance in Latin America. In: Proc Symp On Trop. Stored Products Entomology, 15th Int Cong Entomol. Entomol Sot Am, College Park, MD, USA, pp 691–689

  • Scriber JM (1986) Origins of the regional feeding abilities in the tiger swallowtail butterfly: ecological monophagy and the Papilio glaucus australis subspecies in Florida. Oecologia 74:94–103

    Article  Google Scholar 

  • Seddiqi PM (1972) Studies on Longevity, oviposition, fecundity and development of Callosobruchus chinensis L. (Coleoptera; Bruchidae). J Appl Entomol 72:66–72

    Google Scholar 

  • Somta P, Talekar NS, Srinives P (2006) Characterization of Callosobruchus chinensis (Coleoptera: Bruchidae) resistance in rice bean (Vigna umbellata (Thunb.) Ohwi and Ohashi). J Stored Prod Res 42:313–327

    Article  Google Scholar 

  • Somta C, Somta P, Tomooka N, Ooi PAC, Vaughan DA, Srinives P (2008) Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus Spp. (Coleoptera: Bruchidae). J Stored Prod Res 44:316–321

    Article  Google Scholar 

  • Southgate BJ (1979) Biology of the Bruchidae. Annu Rev Entomol 24:449–473

    Article  Google Scholar 

  • Southgate BJ (1984) Observations on the larval emergence in Callosobruchus chinensis (Coleoptera: Bruchidae). Entomol Gen 9:177–180

    Article  Google Scholar 

  • Sugawara F, Ishimoto M, Le-Van N, Koshino H, Uzawa J, Yoshida S, Kitamura K (1996) Insecticidal peptide from mungbean: a resistant factor against infestation with azuki bean weevil. J Agric Food Chem 44:3360–3364

    Article  CAS  Google Scholar 

  • Szentesi A, Jermy T (1990) The role of experience in host plant choice by phytophagous insects. In: Bernays EA (ed) Insect-plant interactions, vol 2. CRC, PressBoca Raton, pp 39–74

    Google Scholar 

  • Talekar NS (1988) Biology, damage and control of bruchid pests of mungbean. In: Shanmugasundaram S, McLean BT (eds) Mungbean: proceeding of the second international symposium. AVRDC, Tainan, Taiwan, pp 329–342

    Google Scholar 

  • Talekar NS, Lin CP (1992) Characterization of Callosobruchus chinensis (Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol 85:1150–1153

    Article  Google Scholar 

  • Tohiuddin G, Banerjee D, Bhattacharya TC (1993) Energy reserves of adult pulse beetle (Callosobruchus chinensis) (Coleoptera: Bruchidae) reared on seeds of gram (Cicer arietinum). Indian J Agric Sci 63:181–185

    Google Scholar 

  • Tuda M, Shimada M (1995) Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures. Oecologia 103:283–291

    Article  PubMed  Google Scholar 

  • Tuda M, Chou LY, Niyomdham C, Buranapanichpan S, Tateishi Y (2005) Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): high host specificity of non-pest to Cajaninae (Fabaceae). J Stored Prod Res 41:31–45

    Article  Google Scholar 

  • Venora G, Grillo O, Shahin MA, Symons SJ (2007) Identification of Sicilian landraces and Canadian cultivars of lentil using an image analysis system. Food Res Int 40:161–166

    Article  Google Scholar 

  • Wasserman SS (1981) Host induced oviposition preferences and oviposition markers in the cowpea weevil, Callosobruchus maculatus. Ann Entomol Soc Am 74:242–245

    Article  Google Scholar 

  • Wijeratne PM (1998) Variation in egg and adult production of Callosobruchus chinensis (L.) and the effect of egg density and oviposition site limitation. Trop Agric Res Ext 1:136–142

    Google Scholar 

  • Winston PW, Bates DH (1960) Saturated Solutions for the control of humidity in biological research. Ecology 41:232–237

    Article  Google Scholar 

  • Yurtlu YB, Yeşiloğlu E (2011) Mechanical behaviour and split resistance of chestnut under compressive loading. Tarım Bilimleri Dergisi J Agric Sci 17:337–346

    Article  Google Scholar 

  • Zar JH (2010) Bio-statistical analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011291012016), Rural Development Administration, Republic of Korea. For reviews of this manuscript, we thank anonymous reviewers. English editing by Van Driesche Scientific Editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soondo Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, R., Yi, H., Kim, H. et al. Mung bean (Vigna radiata) cultivars mediated oviposition preference and development of Callosobruchus chinensis (Coleoptera: Chrysomelidae: Bruchinae). Appl Entomol Zool 53, 55–66 (2018). https://doi.org/10.1007/s13355-017-0524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-017-0524-x

Keywords

Navigation