Skip to main content
Log in

Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Based on the temperature data from the China Meteorological Administration, NCEP–NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bond, T. C., S. J. Doherty, D. W. Fahey, et al., 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380–5552, doi: 10.1002/jgrd.50171.

    Google Scholar 

  • Braganza, K., D. J. Karoly, and J. M. Arblaster, 2004: Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett., 31, L13217, doi: 10.1029/2004GL019998.

    Article  Google Scholar 

  • Cai, J. X., Z. Y. Guan, Q. J. Gao, et al., 2010: Summertime temperature variations in the middle and lower reaches of Yangtze River and their related circulation anomalies in the past five decades. Journal of Geographical Sciences, 20, 581–598, doi: 10.1007/s11442-010-0581-3.

    Article  Google Scholar 

  • Cai Jiaxi, Guan Zhaoyong, Yu Tiantian, et al., 2011: A classification of summertime temperature patterns in the middle and lower reaches of the Yangtze River and their causes. II: Interdecadal variations. Acta Meteor. Sinica, 69, 112–124. (in Chinese)

    Google Scholar 

  • Charney, J., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 38–54.

    Article  Google Scholar 

  • Chen Longxun, Zhou Xiuji, Li Weiliang, et al., 2004: Characteristics of the climate change and its formation mechanism in China in last 80 years. Acta Meteor. Sinica, 62, 634–646. (in Chinese)

    Google Scholar 

  • Chen Tiexi and Chen Xing, 2007: Variation of diurnal temperature range in China in the past 50 years. Plateau Meteor., 26, 150–157. (in Chinese)

    Google Scholar 

  • Dai, A. G., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 2451–2473.

    Article  Google Scholar 

  • Dai, A. G., T. R. Karl, B. M. Sun, et al., 2006: Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597–606, doi: 10.1175/BAMS-87-5-597.

    Article  Google Scholar 

  • de Graaf, M., and P. Stammes, 2005: SCIAMACHY absorbing aerosol index-calibration issues and global results from 2002–2004. Atmos. Chem. Phys., 5, 2385–2394.

    Article  Google Scholar 

  • Easterling, D. R., B. Horton, P. D. Jones, et al., 1997: Maximum and minimum temperature trends for the globe. Science, 277, 364–367.

    Article  Google Scholar 

  • Fan, J. W., R. Y. Zhang, W. K. Tao, et al., 2008: Effects of aerosol optical properties on deep convective clouds and radiative forcing. J. Geophys. Res., 113, D08209, doi: 10.1029/2007JD009257.

    Google Scholar 

  • Gao, S. Z., Z. Y. Meng, F. Q. Zhang, et al., 2009: Observational analysis of heavy rainfall mechanisms associated with severe tropical storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137, 1881–1897, doi: 10.1175/2008MWR2669.1.

    Article  Google Scholar 

  • Giorgi, F., X. Q. Bi, and Y. Qian, 2002: Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study. J. Geophys. Res., 107, AAC 7-1-AAC 7-18, doi: 10.1029/2001JD001066.

  • Guan, Z. Y., J. Han, and M. G. Li, 2011: Circulation patterns of regional mean daily precipitation extremes over the middle and lower reaches of the Yangtze River during the boreal summer. Climate Research, 50, 171–185, doi: 10.3354/cr01045.

    Article  Google Scholar 

  • Guan Zhenyu, Guan Zhaoyong, Cai Jiaxi, et al., 2013: Mean climatology and interannual variations of the atmospheric stability of planetary boundary layer in the eastern China during boreal summer. Trans. Atmos. Sci., 36, 734–741. (in Chinese).

    Google Scholar 

  • He, B., H. L. Wang, Q. F. Wang, et al., 2015: A quantitative assessment of the relationship between precipitation deficits and air temperature variations. J. Geophys. Res., 120, 5951–5961, doi: 10.1002/2015JD023463.

    Google Scholar 

  • Herman, J. R., P. K. Bhartia, O. Torres, et al., 1997: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res., 102, 16911–16922 doi: 10.1029/96JD03680.

    Article  Google Scholar 

  • Hu, Z. Z., S. Yang, and R. G. Wu, 2003: Long-term climate variations in China and global warming signals. J. Geophys. Res., 108, 4614, doi: 10.1029/2003JD003651.

    Article  Google Scholar 

  • Huang, Y., R. E. Dickinson, and W. L. Chameides, 2006: Impact of aerosol indirect effect on surface temperature over East Asia. Proc. Nat. Acad. Sci. U. S. A., 103, 4371–4376, doi: 10.1073/pnas.0504428103.

    Article  Google Scholar 

  • Huang, R. J., Y. L. Zhang, C. Bozzetti, et al., 2014: High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218–222, doi: 10.1038/nature13774.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2216 pp.

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Karl, T. R., G. Kukla, V. N. Razuvayev, et al., 1991: Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 18, 2253–2256.

    Article  Google Scholar 

  • Karl, T. R., R. W. Knight, K. P. Gallo, et al., 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74, 1007–1023.

    Article  Google Scholar 

  • King, M. D., Y. J. Kaufman, D. Tanré, et al., 1999: Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor. Soc., 80, 2229–2259.

    Article  Google Scholar 

  • Kiss, P., I. M. Jánosi, and O. Torres, 2007: Early calibration problems detected in TOMS Earth-Probe aerosol signal. Geophys. Res. Lett., 34, L07803, doi: 10.1029/2006GL028108.

    Article  Google Scholar 

  • Lau, W. K. M., 2016: The aerosol-monsoon climate system of Asia: A new paradigm. J. Meteor. Res., 30, 1–11, doi: 10.1007/s13351-015-5999-1.

    Article  Google Scholar 

  • Lee, K. H., Z. Q. Li, M. S. Wong, et al., 2007: Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements. J. Geophys. Res., 112, D22S15, doi: 10.1029/2007JD009077.

    Google Scholar 

  • Li Hui, Zhou Shunwu, and Wang Yafei, 2013: A review on relationship between subtropical high anomaly over West Pacific and summer precipitation in the middle–lower reaches of the Yangtze River. J. Meteor. Environ., 29, 93–102. (in Chinese)

    Google Scholar 

  • Li, Q., R. H. Zhang, and Y. Wang, 2016: Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with East Asian winter monsoon. Int. J. Climatol., 36, 346–354, doi: 10.1002/joc.4350.

    Article  Google Scholar 

  • Liao, H., and J. J. Shang, 2015: Regional warming by black carbon and tropospheric ozone: A review of progresses and research challenges in China. J. Meteor. Res., 29, 525–545, doi: 10.1007/s13351-015-4120-0.

    Article  Google Scholar 

  • Liu, X. D., L. B. Yan, P. Yang, et al., 2011: Influence of Indian summer monsoon on aerosol loading in East Asia. J. Applied Meteor. Climatol., 50, 523–533, doi: 10.1175/2010JAMC2414.1.

    Article  Google Scholar 

  • Luo Yunfeng, Li Weiliang, and Zhou Xiuji, 2001: Analysis of the 1980’s atmospheric aerosol optical depth over China. Acta Meteor. Sinica, 59, 77–87. (in Chinese)

    Google Scholar 

  • Luo Yunfeng, Lv Daren, Zhou Xiuji, et al., 2002: Analyses on the spatial distribution of aerosol optical depth over China in recent 30 years. Chinese J. Atmos. Sci., 26, 721–730. (in Chinese)

    Google Scholar 

  • Peng Jingbei, and B. Cholaw, 2011: The definition and classification of extensive and persistent extreme cold events in China. Atmos. Oceanic Sci. Lett., 4, 281–286.

    Article  Google Scholar 

  • Qian, Y., L. R. Leung, S. J. Ghan, et al., 2003: Regional climate effects of aerosols over China: Modeling and observation. Tellus B, 55, 914–934.

    Article  Google Scholar 

  • Ren Guoyu, Xu Mingzhi, Chu Ziying, et al., 2005: Changes of surface air temperature in China during 1951–2004. Climatic Environ. Res., 10, 717–727. (in Chinese)

    Google Scholar 

  • Ren Guoyu, Ding Yihui, Zhao Zongci, et al., 2012: Recent progress in studies of climate change in China. Adv. Atmos. Sci., 29, 958–977, doi: 10.1007/s00376-012-1200-2.

    Article  Google Scholar 

  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 1385–1404.

    Article  Google Scholar 

  • Stone, D. A., and A. J. Weaver, 2003: Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Climate Dyn., 20, 435–445.

    Google Scholar 

  • Sun Yi, Guan Zhaoyong, Ma Fenhua, et al., 2015: Linkage between AOD and surface solar radiation variability in association with East Asian summer monsoon circulation changes: Role of seasonal trends. Trans. Atmos. Sci., 38, 165–174, doi: 10.13878/j.cnki.dqkxxb.20141011008. (in Chinese)

    Google Scholar 

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627.

    Article  Google Scholar 

  • Torres, O., P. K. Bhartia, J. R. Herman, et al., 1998: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res., 103, 17099–17110.

    Article  Google Scholar 

  • Torres, O., P. K. Bhartia, J. R. Herman, et al., 2002: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci., 59, 398–413.

    Article  Google Scholar 

  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi: 10.1029/2005GL022760.

    Article  Google Scholar 

  • Tu Qipu, Deng Ziwang, and Zhou Xiaolan, 2000: Studies on the regional characteristics of air temperature abnormal in China. Acta Meteor. Sinica, 58, 288–296. (in Chinese)

    Google Scholar 

  • Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32, L23822, doi: 10.1029/2005GL024379.

    Article  Google Scholar 

  • Wang, C. E., 2013: Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses. Atmos. Res., 122, 237–249.

    Article  Google Scholar 

  • Wang Zunya, Ding Yihui, He Jinhai, et al., 2004: An updating analysis of the climate change in China in recent 50 years. Acta Meteor. Sinica, 62, 228–236. (in Chinese)

    Google Scholar 

  • Wang, K. C., R. E. Dickinson, and S. L. Liang, 2009: Clear sky visibility has decreased over land globally from 1973 to 2007. Science, 323, 1468–1470, doi: 10.1126/science.1167549.

    Article  Google Scholar 

  • Wang, T. J., B. L. Zhuang, S. Li, et al., 2015: The interactions between anthropogenic aerosols and the East Asian summer monsoon using RegCCMS. J. Geophys. Res., 120, 5602–5621, doi: 10.1002/2014JD022877.

    Google Scholar 

  • Wild, M., H. Gilgen, A. Roesch, et al., 2005: From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science, 308, 847–850.

    Article  Google Scholar 

  • Wu Guoxiong, Li Zhanqing, Fu Congbin, et al., 2016: Advances in studying interactions between aerosols and monsoon in China. Science China Earth Sciences, 59, 1–16, doi: 10.1007/s11430-015-5198-z.

    Article  Google Scholar 

  • Yu, Z. F., Y. Q. Wang, and H. M. Xu, 2015: Observed rainfall asymmetry in tropical cyclones making landfall over China. J. Applied Meteor. Climatol., 54, 117–136, doi: 10.1175/JAMC-D-13-0359.1.

    Article  Google Scholar 

  • Zhang Qingyun and Tao Shiyan, 1998: Influence of Asian mid–high latitude circulation on East Asian summer rainfall. Acta Meteor. Sinica, 56, 199–211. (in Chinese)

    Google Scholar 

  • Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phy., 12, 779–799, doi: 10.5194/acp-12-779-2012.

    Article  Google Scholar 

  • Zhang Xiaoye, Sun Junying, Wang Yaqiang, et al., 2013: Factors contributing to haze and fog in China. Chinese Sci. Bull., 58, 1178–1187. (in Chinese)

    Article  Google Scholar 

  • Zhao Junhu, Feng Guolin, Yang Jie, et al., 2012: Analysis of the distribution of the large-scale drought/flood of summer in China under different types of the western Pacific subtropical high. Acta Meteor. Sinica, 70, 1021–1031. (in Chinese)

    Google Scholar 

  • Zhuang, B. L., Q. Liu, T. J. Wang, et al., 2013: Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China. Theor. Appl. Climatol., 114, 651–672, doi: 10.1007/s00704-013-0862-8.

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to the two anonymous reviewers for their helpful comments. The NCEP–NCAR reanalysis data were downloaded from http://www.esrl.noaa.gov/psd/data/gridded. The TOMS AI was from http://toms.gsfc.nasa.gov. All figures in this work were plotted by using the Grid Analysis and Display System (GrADS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyong Guan  (关兆勇).

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2011CB403406), National Natural Science Foundation of China (91544230 and 41105056), and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. The first author is partly supported by the State Scholarship Fund (201308320043). Ma Fenhua is partly supported by the Research Innovation Program for College Graduates of Jiangsu Province (CXLX13−475).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Guan, Z. & Ma, F. Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River. J Meteorol Res 30, 927–943 (2016). https://doi.org/10.1007/s13351-016-6006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-6006-1

Key words

Navigation