Skip to main content

Advertisement

Log in

Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) remains one of the leading cause of mortality over the world. However, current treatments are more palliative than curative, which only stall the progression of the disease, but not reverse the disease. While stem cells or bioactive molecules therapy is promising, the limited survival and engraftment of bioactive agent due to a hostile environment is a bottleneck for MI treatment. In order to maximize the utility of stem cells and bioactive molecules for myocardial repair and regeneration, various types of biomaterials have been developed. Among them, collagen-based biomaterial is widely utilized for cardiac tissue engineering and regeneration due to its optimal physical and chemical properties. In this review, we summarize the properties of collagen-based biomaterial. Then, we discuss collagen-based biomaterial currently being applied to treat MI alone, or together with stem cells and/or bioactive molecules. Finally, the delivery system of collagen-based biomaterial will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348(20):2007–18. https://doi.org/10.1056/NEJMra021498.

    Article  PubMed  Google Scholar 

  2. Baig MK, Mahon N, McKenna WJ, Caforio ALP, Bonow RO, Francis GS, et al. The pathophysiology of advanced heart failure. Am Heart J. 1998;135(6):S216–30. https://doi.org/10.1016/S0002-8703(98)70252-2.

    Article  CAS  PubMed  Google Scholar 

  3. Rong S, Wang X, Zhang C, Song Z, Cui L, He X, et al. Transplantation of HGF gene-engineered skeletal myoblasts improve infarction recovery in a rat myocardial ischemia model. Plos One. 2017;12(5):e175807. https://doi.org/10.1371/journal.pone.0175807.

    Article  CAS  Google Scholar 

  4. Kurazumi H, Fujita A, Nakamura T, Suzuki R, Takahashi M, Shirasawa B, et al. Short- and long-term outcomes of intramyocardial implantation of autologous bone marrow-derived cells for the treatment of ischaemic heart disease. Interact Cardiovasc Th. 2016;24(3):w412. https://doi.org/10.1093/icvts/ivw412.

    Article  Google Scholar 

  5. Sun J, Wei T, Bai S, Zhao H, Liu X, Yu J, et al. Calcium-sensing receptor-mediated mitogen-activated protein kinase pathway improves the status of transplanted mouse embryonic stem cells in rats with acute myocardial infarction. Mol Cell Biochem. 2017;431(1–2):151–60. https://doi.org/10.1007/s11010-017-2987-z.

    Article  CAS  PubMed  Google Scholar 

  6. Rabbani S, Soleimani M, Imani M, Sahebjam M, Ghiaseddin A, Nassiri SM, et al. Regenerating heart using a novel compound and human wharton jelly mesenchymal stem cells. Arch Med Res. 2017;48(3):228–37. https://doi.org/10.1016/j.arcmed.2017.03.019.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Xiang B, Deng J, Lin H, Freed DH, Arora RC, et al. Hypoxia enhances the therapeutic potential of superparamagnetic iron oxide-labeled adipose-derived stem cells for myocardial infarction. J Huazhong Univ Sci Technol [Med Sci]. 2017;37(4):516–22. https://doi.org/10.1007/s11596-017-1766-0.

    Article  CAS  Google Scholar 

  8. Song F, Hua F, Li H, Zhou X, Yan L, Yang Q, et al. Cardiac stem cell transplantation with 2,3,5,4′-tetrahydroxystilbehe-2-O-β-d-glucoside improves cardiac function in rat myocardial infarction model. Life Sci. 2016;158:37–45. https://doi.org/10.1016/j.lfs.2016.06.011.

    Article  CAS  PubMed  Google Scholar 

  9. Rojas SV, Kensah G, Rotaermel A, Baraki H, Kutschka I, Zweigerdt R, et al. Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. Plos One. 2017;12(5):e173222. https://doi.org/10.1371/journal.pone.0173222.

    Article  CAS  Google Scholar 

  10. Reinecke H, Murry CE. Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology. J Mol Cell Cardiol. 2002;34(3):251–3. https://doi.org/10.1006/jmcc.2001.1494.

    Article  CAS  PubMed  Google Scholar 

  11. Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP, et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J. 2008;29(23):2851–8. https://doi.org/10.1093/eurheartj/ehn456.

    Article  PubMed  Google Scholar 

  12. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20(6):661–9. https://doi.org/10.1096/fj.05-5211com.

    Article  CAS  PubMed  Google Scholar 

  13. Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials. 2016;90:85–115. https://doi.org/10.1016/j.biomaterials.2016.03.020.

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharjee A, Bansal M. Collagen structure: the madras triple helix and the current scenario. IUBMB Life. 2005;57(3):161–72. https://doi.org/10.1080/15216540500090710.

    Article  CAS  PubMed  Google Scholar 

  15. Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, et al. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos Trans R Soc B Biol Sci. 2002;357(1418):191–7. https://doi.org/10.1098/rstb.2001.1033.

    Article  CAS  Google Scholar 

  16. Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, et al. Collagen—emerging collagen based therapies hit the patient. Adv Drug Deliver Rev. 2013;65(4):429–56. https://doi.org/10.1016/j.addr.2012.08.010.

    Article  CAS  Google Scholar 

  17. Gelse K. Collagens—structure, function, and biosynthesis. Adv Drug Deliver Rev. 2003;55(12):1531–46. https://doi.org/10.1016/j.addr.2003.08.002.

    Article  CAS  Google Scholar 

  18. Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface. 2011;9(66):1–19. https://doi.org/10.1098/rsif.2011.0301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jayarama Reddy Venugopal MPP, Shayanti Mukherjee RR, Ramakrishna KDAS. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface. 2012;9:1–19. https://doi.org/10.1098/rsif.2011.0301.

    Article  CAS  PubMed  Google Scholar 

  20. Gazoti DC, Mesiano ML, Rodrigues DSR. Age related changes of the collagen network of the human heart. Mech Ageing Dev. 2001;122(10):1049–58.

    Article  Google Scholar 

  21. Bishop JE. Regulation of cardiovascular collagen deposition by mechanical forces. Mol Med Today. 1998;4(2):69–75. https://doi.org/10.1016/S1357-4310(97)01193-3.

    Article  CAS  PubMed  Google Scholar 

  22. Valiente-Alandi I, Schafer AE, Blaxall BC. Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol. 2016;91:228–37. https://doi.org/10.1016/j.yjmcc.2016.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haraguchi Y, Shimizu T, Yamato M, Okano T. Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cell Transl Med. 2012;1(2):136–41. https://doi.org/10.5966/sctm.2012-0030.

    Article  CAS  Google Scholar 

  24. Sherrell PC, Cieślar-Pobuda A, Ejneby MS, Sammalisto L, Gelmi A, de Muinck E, et al. Rational design of a conductive collagen heart patch. Macromol Biosci. 2017;17(7):1600446. https://doi.org/10.1002/mabi.201600446.

    Article  CAS  Google Scholar 

  25. Hein S. The extracellular matrix in normal and diseased myocardium. J Nucl Cardiol. 2001;8(2):188–96. https://doi.org/10.1067/mnc.2001.113331.

    Article  CAS  PubMed  Google Scholar 

  26. Nogami K, Kusachi S, Nunoyama H, Kondo J, Endo C, Yamamoto K, et al. Extracellular matrix components in dilated cardiomyopathy. immunohistochemical study of endomyocardial biopsy specimens. Jpn Heart J. 1996;37(4):483–94. https://doi.org/10.1536/ihj.37.483.

    Article  CAS  PubMed  Google Scholar 

  27. Jane-Lise S, Corda S, Chassagne C, Rappaport L. The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev. 2000;5(3):239–50. https://doi.org/10.1023/A:1009857403356.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmadi A, Mc-Neill B, Vulesevic B, Kordos M, Mesana L, Thorn S, et al. The role of integrin α2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials. 2014;35(17):4749–58. https://doi.org/10.1016/j.biomaterials.2014.02.028.

    Article  CAS  PubMed  Google Scholar 

  29. Perea-Gil I, Prat-Vidal C, Bayes-Genis A. In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin’. Stem Cell Res Ther. 2015;6(1). https://doi.org/10.1186/s13287-015-0237-4.

  30. Goldsmith EC, Borg TK. The dynamic interaction of the extracellular matrix in cardiac remodeling. J Card Fail. 2002;8(6):S314–8. https://doi.org/10.1054/jcaf.2002.129258.

    Article  CAS  PubMed  Google Scholar 

  31. Herpel E, Pritsch M, Koch A, Dengler TJ, Schirmacher P, Schnabel PA. Interstitial fibrosis in the heart: differences in extracellular matrix proteins and matrix metalloproteinases in end-stage dilated, ischaemic and valvular cardiomyopathy. Histopathology. 2006;48(6):736–47. https://doi.org/10.1111/j.1365-2559.2006.02398.x.

    Article  CAS  PubMed  Google Scholar 

  32. Woodiwiss AJ, Tsotetsi OJ, Sprott S, Lancaster EJ, Mela T, Chung ES, et al. Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction. Circulation. 2001;103(1):155–60. https://doi.org/10.1161/01.CIR.103.1.155.

    Article  CAS  PubMed  Google Scholar 

  33. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P. Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res. 1990;67(1):23–34. https://doi.org/10.1161/01.RES.67.1.23.

    Article  CAS  PubMed  Google Scholar 

  34. Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng. 2011;13(1):245–67. https://doi.org/10.1146/annurev-bioeng-071910-124701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Therapeut. 2005;105(2):151–63. https://doi.org/10.1016/j.pharmthera.2004.10.003.

    Article  CAS  Google Scholar 

  36. Finosh GT, Jayabalan M. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: new developments and challenges. Biomatter. 2012;2(1):1–14. https://doi.org/10.4161/biom.19429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53. https://doi.org/10.1146/annurev-bioeng-071910-124743.

    Article  CAS  PubMed  Google Scholar 

  38. Blackburn NJR, Sofrenovic T, Kuraitis D, Ahmadi A, McNeill B, Deng C, et al. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials. 2015;39:182–92. https://doi.org/10.1016/j.biomaterials.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  39. Boccafoschi F, Habermehl J, Vesentini S, Mantovani D. Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials. 2005;26(35):7410–7. https://doi.org/10.1016/j.biomaterials.2005.05.052.

    Article  CAS  PubMed  Google Scholar 

  40. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31. https://doi.org/10.1016/j.biomaterials.2006.01.039.

    Article  CAS  PubMed  Google Scholar 

  41. Goissis G, Marcantonio EJ, Marcantonio RA, Lia RC, Cancian DC, de Carvalho WM. Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials. 1999;20(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  42. Ahmadi AL, Thorn S, Alarcon EI, Kordos M, Padavan DT, Hadizad T, et al. PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction. Biomaterials. 2015;49:18–26. https://doi.org/10.1016/j.biomaterials.2015.01.016.

    Article  CAS  PubMed  Google Scholar 

  43. Neuta PA, Rojas DM, Agredo W, Gutierrez JO. Evaluation of the repairing effect of collagen type I and MaxGel on the infarcted myocardium in an animal model. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:3529–32. https://doi.org/10.1109/EMBC.2015.7319154.

    Article  CAS  Google Scholar 

  44. Serpooshan V, Zhao M, Metzler SA, Wei K, Shah PB, Wang A, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials. 2013;34(36):9048–55. https://doi.org/10.1016/j.biomaterials.2013.08.017.

    Article  CAS  PubMed  Google Scholar 

  45. Huang NF, Yu J, Sievers R, Li S, Lee RJ. Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 2005;11(11–12):1860–6. https://doi.org/10.1089/ten.2005.11.1860.

    Article  CAS  PubMed  Google Scholar 

  46. Cortes-Morichetti M, Frati G, Schussler O, Van Huyen JD, Lauret E, Genovese JA, et al. Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng. 2007;13(11):2681–7. https://doi.org/10.1089/ten.2006.0447.

    Article  CAS  PubMed  Google Scholar 

  47. Xiang Z, Liao R, Kelly MS, Spector M. Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue Eng. 2006;12(9):2467–78. https://doi.org/10.1089/ten.2006.12.2467.

    Article  CAS  PubMed  Google Scholar 

  48. Gaballa MA, Sunkomat JNE, Thai H, Morkin E, Ewy G, Goldman S. Grafting an acellular 3-dimensional collagen scaffold onto a non-transmural infarcted myocardium induces neo-angiogenesis and reduces cardiac remodeling. J Heart Lung Transplant. 2006;25(8):946–54. https://doi.org/10.1016/j.healun.2006.04.008.

    Article  PubMed  Google Scholar 

  49. Araña M, Peña E, Abizanda G, Cilla M, Ochoa I, Gavira JJ, et al. Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Acta Biomater. 2013;9(4):6075–83. https://doi.org/10.1016/j.actbio.2012.12.014.

    Article  CAS  PubMed  Google Scholar 

  50. Maureira P, Marie PY, Yu F, Poussier S, Liu Y, Groubatch F, et al. Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. J Biomed Sci. 2012;19:93. https://doi.org/10.1186/1423-0127-19-93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruping Q, Kuken B, Huang Y, Sun J, Azhati A. Effection of myocardial cell/collagen compound on ventricular electrophysiology in rats with myocardial infarction. Eur Rev Med Pharmacol Sci. 2016;20(11):2357–62.

    CAS  PubMed  Google Scholar 

  52. Araña M, Gavira JJ, Peña E, González A, Abizanda G, Cilla M, et al. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and mini pig models of chronic myocardial infarction. Biomaterials. 2014;35(1):143–51. https://doi.org/10.1016/j.biomaterials.2013.09.083.

    Article  CAS  PubMed  Google Scholar 

  53. Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, et al. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant. 2007;16(9):927–34.

    Article  PubMed  Google Scholar 

  54. Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM Trial): clinical feasibility study. Ann Thorac Surg. 2008;85(3):901–8. https://doi.org/10.1016/j.athoracsur.2007.10.052.

    Article  PubMed  Google Scholar 

  55. Hamdi H, Planat-Benard V, Bel A, Neamatalla H, Saccenti L, Calderon D, et al. Long-term functional benefits of epicardial patches as cell carriers. Cell Transplant. 2014;23(1):87–96. https://doi.org/10.3727/096368912X658836.

    Article  PubMed  Google Scholar 

  56. Danoviz ME, Nakamuta JS, Marques FL, Dos SL, Alvarenga EC, Dos SA, et al. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention. Plos One. 2010;5(8):e12077. https://doi.org/10.1371/journal.pone.0012077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi C, Li Q, Zhao Y, Chen W, Chen B, Xiao Z, et al. Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials. 2011;32(10):2508–15. https://doi.org/10.1016/j.biomaterials.2010.12.026.

    Article  CAS  PubMed  Google Scholar 

  58. Shafy A, Fink T, Zachar V, Lila N, Carpentier A, Chachques JC. Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. Eur J Cardio-Thorac. 2013;43(6):1211–9. https://doi.org/10.1093/ejcts/ezs480.

    Article  Google Scholar 

  59. Holladay CA, Duffy AM, Chen X, Sefton MV, O Brien TD, Pandit AS. Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold. Biomaterials. 2012;33(5):1303–14. https://doi.org/10.1016/j.biomaterials.2011.10.019.

    Article  CAS  PubMed  Google Scholar 

  60. Dai W, Wold LE, Dow JS, Kloner RA. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats. J Am Coll Cardiol. 2005;46(4):714–9. https://doi.org/10.1016/j.jacc.2005.04.056.

    Article  CAS  PubMed  Google Scholar 

  61. Gao J, Liu J, Gao Y, Wang C, Zhao Y, Chen B, et al. A myocardial patch made of collagen membranes loaded with collagen-binding human vascular endothelial growth factor accelerates healing of the injured rabbit heart. Tissue Eng A. 2011;17(21–22):2739–47. https://doi.org/10.1089/ten.tea.2011.0105.

    Article  CAS  Google Scholar 

  62. Kouris NA, Squirrell JM, Jung JP, Pehlke CA, Hacker T, Eliceiri KW, et al. A nondenatured, noncrosslinked collagen matrix to deliver stem cells to the heart. Regen Med. 2011;6(5):569–82. https://doi.org/10.2217/rme.11.48.

    Article  CAS  PubMed  Google Scholar 

  63. Dai W, Hale SL, Kay GL, Jyrala AJ, Kloner RA. Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen Med. 2009;4(3):387–95. https://doi.org/10.2217/rme.09.2.

    Article  CAS  PubMed  Google Scholar 

  64. Kutschka I. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation. 2006;114(1_suppl):167–73. https://doi.org/10.1161/CIRCULATIONAHA.105.001297.

    Article  Google Scholar 

  65. Kutschka I, Chen IY, Kofidis T, von Degenfeld G, Sheikh AY, Hendry SL, et al. In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J Heart Lung Transplant. 2007;26(3):273–80. https://doi.org/10.1016/j.healun.2006.11.604.

    Article  PubMed  Google Scholar 

  66. Mokashi SA, Guan J, Wang D, Tchantchaleishvili V, Brigham M, Lipsitz S, et al. Preventing cardiac remodeling: the combination of cell-based therapy and cardiac support therapy preserves left ventricular function in rodent model of myocardial ischemia. J Thorac Cardiovasc Surg. 2010;140(6):1374–80. https://doi.org/10.1016/j.jtcvs.2010.07.070.

    Article  PubMed  Google Scholar 

  67. Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, et al. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo (acryloyl carbonate)–poly (ethylene glycol)–oligo (acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 2015;15:55–64. https://doi.org/10.1016/j.actbio.2014.12.016.

    Article  CAS  PubMed  Google Scholar 

  68. Ahmadi A, Vulesevic B, Blackburn NJR, Ruel JJM, Suuronen EJ. A collagen-chitosan injectable hydrogel improves cardiac remodeling in a mouse model of myocardial infarction. J Biomater Tiss Eng. 2014;4(11):886–94. https://doi.org/10.1166/jbt.2014.1264.

    Article  Google Scholar 

  69. Reis LA, LLY C, Wu J, Feric N, Laschinger C, Momen A, et al. Hydrogels with integrin-binding angiopoietin-1–derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circ Heart Fail. 2015;8(2):333–41. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001881.

    Article  CAS  PubMed  Google Scholar 

  70. Chiu LL, Reis LA, Momen A, Radisic M. Controlled release of thymosin β4 from injected collagen–chitosan hydrogels promotes angiogenesis and prevents tissue loss after myocardial infarction. Regen Med. 2012;7(4):523–33. https://doi.org/10.2217/rme.12.35.

    Article  CAS  PubMed  Google Scholar 

  71. Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv. 2014;32(2):449–61. https://doi.org/10.1016/j.biotechadv.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  72. Segers VFM, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937–42. https://doi.org/10.1038/nature06800.

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Zhou J, Liu Z, Wang C. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med. 2010. https://doi.org/10.1111/j.1582-4934.2010.01046.x.

  74. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol. 2008;45(4):567–81. https://doi.org/10.1016/j.yjmcc.2008.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roche ET, Hastings CL, Lewin SA, Shvartsman DE, Brudno Y, Vasilyev NV, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials. 2014;35(25):6850–8. https://doi.org/10.1016/j.biomaterials.2014.04.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Araña M, Gavira JJ, Peña E, González A, Abizanda G, Cilla M, et al. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction. Biomaterials. 2014;35(1):143–51. https://doi.org/10.1016/j.biomaterials.2013.09.083.

    Article  CAS  PubMed  Google Scholar 

  77. Amado LC, Saliaris AP, Schuleri KH, St. John M, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci. 2005;102(32):11474–9. https://doi.org/10.1073/pnas.0504388102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aggarwal S. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22. https://doi.org/10.1182/blood-2004-04-1559.

    Article  CAS  PubMed  Google Scholar 

  79. Wollert KC. Clinical applications of stem cells for the heart. Circ Res. 2005;96(2):151–63. https://doi.org/10.1161/01.RES.0000155333.69009.63.

    Article  CAS  PubMed  Google Scholar 

  80. Bonafe F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci. 2014;21:100. https://doi.org/10.1186/s12929-014-0100-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Young PP, Vaughan DE, Hatzopoulos AK. Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis. 2007;49(6):421–9. https://doi.org/10.1016/j.pcad.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107(11):1395–402. https://doi.org/10.1172/JCI12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nagata H, Ii M, Kohbayashi E, Hoshiga M, Hanafusa T, Asahi M. Cardiac adipose-derived stem cells exhibit high differentiation potential to cardiovascular cells in C57BL/6 mice. Stem Cells Transl Med. 2016;5(2):141–51. https://doi.org/10.5966/sctm.2015-0083.

    Article  PubMed  Google Scholar 

  84. Choi YS, Matsuda K, Dusting GJ, Morrison WA, Dilley RJ. Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials. 2010;31(8):2236–42. https://doi.org/10.1016/j.biomaterials.2009.11.097.

    Article  CAS  PubMed  Google Scholar 

  85. Ma T, Sun J, Zhao Z, Lei W, Chen Y, Wang X, et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther. 2017;8(1). https://doi.org/10.1186/s13287-017-0585-3.

  86. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Cozzarelli prize winner: robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci. 2012;109(27):E1848–57. https://doi.org/10.1073/pnas.1200250109.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhao S, Xu Z, Wang H, Reese BE, Gushchina LV, Jiang M, et al. Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction. Nat Commun. 2016;7:13306. https://doi.org/10.1038/ncomms13306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang L, Zhang X, Xu C, Liu H, Qin J. Human induced pluripotent stem cell-derived cardiac tissue on a thin collagen membrane with natural microstructures. Biomater Sci. 2016;4(11):1655–62. https://doi.org/10.1039/c6bm00522e.

    Article  CAS  PubMed  Google Scholar 

  89. Di Spigna G, Iannone M, Ladogana P, Salzano S, Ventre M, Covelli B, et al. Human cardiac multipotent adult stem cells in 3D matrix: new approach of tissue engineering in cardiac regeneration post-infarction. J Biol Regul Homeost Agents. 2017;31(4):911–21.

    PubMed  Google Scholar 

  90. Fernandes S, Chong J, Paige SL, Iwata M, Torok-Storb B, Keller G, et al. Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Rep. 2015;5(5):753–62. https://doi.org/10.1016/j.stemcr.2015.09.011.

    Article  CAS  Google Scholar 

  91. Ling L, Gu S, Cheng Y. Resveratrol activates endogenous cardiac stem cells and improves myocardial regeneration following acute myocardial infarction. Mol Med Rep. 2017;15(3):1188–94. https://doi.org/10.3892/mmr.2017.6143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Simpson D, Liu H, Fan TM, Nerem R, Dudley SC. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells. 2007;25(9):2350–7. https://doi.org/10.1634/stemcells.2007-0132.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Malliaras K, Marban E. Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull. 2011;98(1):161–85. https://doi.org/10.1093/bmb/ldr018.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 2000;102(8):898–901. https://doi.org/10.1161/01.CIR.102.8.898.

    Article  CAS  PubMed  Google Scholar 

  95. Nagai N, Kumasaka N, Kawashima T, Kaji H, Nishizawa M, Abe T. Preparation and characterization of collagen microspheres for sustained release of VEGF. J Mater Sci Mater Med. 2010;21(6):1891–8. https://doi.org/10.1007/s10856-010-4054-0.

    Article  CAS  PubMed  Google Scholar 

  96. Bui QT, Gertz ZM, Wilensky RL. Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Res Ther. 2010;1(4):29. https://doi.org/10.1186/scrt29.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rufaihah AJ, Seliktar D. Hydrogels for therapeutic cardiovascular angiogenesis. Adv Drug Deliver Rev. 2016;96:31–9. https://doi.org/10.1016/j.addr.2015.07.003.

    Article  CAS  Google Scholar 

  98. Kofidis T, de Bruin JL, Hoyt G, Lebl DR, Tanaka M, Yamane T, et al. Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J Thorac Cardiovasc Surg. 2004;128(4):571–8. https://doi.org/10.1016/j.jtcvs.2004.05.021.

    Article  PubMed  Google Scholar 

  99. Johnson TD, Christman KL. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin Drug Del. 2012;10(1):59–72. https://doi.org/10.1517/17425247.2013.739156.

    Article  CAS  Google Scholar 

  100. Dib N, Campbell A, Jacoby DB, Zawadzka A, Ratliff J, Miedzybrocki BM, et al. Safety and feasibility of percutaneous autologous skeletal myoblast transplantation in the coil-infarcted swine myocardium. J Pharmacol Toxicol Methods. 2006;54(1):71–7. https://doi.org/10.1016/j.vascn.2005.12.002.

    Article  CAS  PubMed  Google Scholar 

  101. Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N, et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv. 2016;34(4):362–79. https://doi.org/10.1016/j.biotechadv.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  102. Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation. 2005;112(9 Suppl):I173–7. https://doi.org/10.1161/CIRCULATIONAHA.104.526178.

    Article  PubMed  Google Scholar 

  103. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. https://doi.org/10.1159/000339613.

    Article  CAS  PubMed  Google Scholar 

  104. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21. https://doi.org/10.1038/nature07039.

    Article  CAS  PubMed  Google Scholar 

  105. Barandon L, Couffinhal T, Dufourcq P, Alzieu P, Daret D, Deville C, et al. Repair of myocardial infarction by epicardial deposition of bone marrow cell-coated muscle patch in a murine model. Ann Thorac Surg. 2004;78(4):1409–17. https://doi.org/10.1016/j.athoracsur.2003.12.078.

    Article  PubMed  Google Scholar 

  106. Ungerleider JL, Christman KL. Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med. 2014;3(9):1090–9. https://doi.org/10.5966/sctm.2014-0049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81670402 and 81570395).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-yuan Song or Shu Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Wq., Peng, S., Song, Zy. et al. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv. and Transl. Res. 9, 920–934 (2019). https://doi.org/10.1007/s13346-019-00627-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00627-0

Keywords

Navigation