Skip to main content
Log in

Resveratrol Improves Motoneuron Function and Extends Survival in SOD1G93A ALS Mice

  • Original Article
  • Published:
Neurotherapeutics

Abstract

Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease that causes progressive paralysis and death due to degeneration of motoneurons in spinal cord, brainstem and motor cortex. Nowadays, there is no effective therapy and patients die 2–5 years after diagnosis. Resveratrol (trans-3,4′,5-trihydroxystilbene) is a natural polyphenol found in grapes, with promising neuroprotective effects since it induces expression and activation of several neuroprotective pathways involving Sirtuin1 and AMPK. The objective of this work was to assess the effect of resveratrol administration on SOD1G93A ALS mice. We determined the onset of symptoms by rotarod test and evaluated upper and lower motoneuron function using electrophysiological tests. We assessed the survival of the animals and determined the number of spinal motoneurons. Finally, we further investigated resveratrol mechanism of action by means of western blot and immunohistochemical analysis. Resveratrol treatment from 8 weeks of age significantly delayed disease onset and preserved lower and upper motoneuron function in female and male animals. Moreover, resveratrol significantly extended SOD1G93A mice lifespan and promoted survival of spinal motoneurons. Delayed resveratrol administration from 12 weeks of age also improved spinal motoneuron function preservation and survival. Further experiments revealed that resveratrol protective effects were associated with increased expression and activation of Sirtuin 1 and AMPK in the ventral spinal cord. Both mediators promoted normalization of the autophagic flux and, more importantly, increased mitochondrial biogenesis in the SOD1G93A spinal cord. Taken together, our findings suggest that resveratrol may represent a promising therapy for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009;4:3.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;364:362.

    PubMed  CAS  Google Scholar 

  3. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995;92:689–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 2010;13:1396–403.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006;7:710–23.

    Article  PubMed  CAS  Google Scholar 

  6. Ferraiuolo L, Higginbottom A, Heath PR, Barber SC, Greenald D, Kirby J, et al. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 2011;134:2627–41.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rothstein JD. Of mice and men: reconciling preclinical ALS mouse studies and human clinical trials. Ann Neurol 2003;53:423–6.

    Article  PubMed  Google Scholar 

  8. Benatar M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 2007;26:1–13.

    Article  PubMed  CAS  Google Scholar 

  9. Albani D, Polito L, Signorini A, Forloni G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. BioFactors 2010;36:370–6.

    Article  PubMed  CAS  Google Scholar 

  10. Porquet D, Casadesús G, Bayod S, Vicente A, Canudas AM, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr) 2013;35:1851-1865.

    Article  CAS  Google Scholar 

  11. Tennen RI, Michishita-Kioi E, Chua KF. Finding a target for resveratrol. Cell 2012;148:387–389.

    Article  PubMed  CAS  Google Scholar 

  12. Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012;148:421–433.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 2012;33:494–501.

    Article  PubMed  CAS  Google Scholar 

  14. Jeong J-K, Moon M-H, Bae B-C, Lee Y-J, Seol J-W, Kang H-S, et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 2012;73:99–105.

    Article  PubMed  CAS  Google Scholar 

  15. Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol Aging 2013;34:146–56.

    Article  PubMed  CAS  Google Scholar 

  16. Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism 2012;15:675–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Baur JA. Biochemical effects of SIRT1 activators. Biochimica Biophysica Acta 2010;1804:1626–34.

    Google Scholar 

  18. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature 2009;458:1056–1060.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008;14:661–673.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008;283:20015–20026.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008;283:27628–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 2011;19:163–174.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res 2011;1374:100–109.

    Article  PubMed  CAS  Google Scholar 

  24. Wang L-M, Wang Y-J, Cui M, Luo W-J, Wang X-J, Barber PA, et al. A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. Eur J Neurosci 2013;37:1669–1681.

    Article  PubMed  Google Scholar 

  25. Wang J, Zhang Y, Tang L, Zhang N, Fan D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci Lett 2011;503:250–255.

    Article  PubMed  CAS  Google Scholar 

  26. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. The EMBO Journal 2007;26:3169–3179.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Mancuso R, Santos-Nogueira E, Osta R, Navarro X. Electrophysiological analysis of a murine model of motoneuron disease. Clin Neurophysiol 2011;122:1660–1670.

    Article  PubMed  Google Scholar 

  28. Valero-Cabré A, Navarro X. H reflex restitution and facilitation after different types of peripheral nerve injury and repair. Brain Res 2001;919:302–312.

    Article  PubMed  Google Scholar 

  29. García-Alías G, Verdú E, Forés J, López-Vales R, Navarro X. Functional and electrophysiological characterization of photochemical graded spinal cord injury in the rat. J Neurotrauma 2003;20:501–510.

    Article  PubMed  Google Scholar 

  30. Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 2009;10:519–529.

    Article  PubMed  CAS  Google Scholar 

  31. Miana-Mena FJ, Muñoz MJ, Yagüe G, Mendez M, Moreno M, Ciriza J, et al. Optimal methods to characterize the G93A mouse model of ALS. Amyotroph Lateral Scler 2005;6:55–62.

    Article  CAS  Google Scholar 

  32. Mancuso R, Oliván S, Osta R, Navarro X. Evolution of gait abnormalities in SOD1(G93A) transgenic mice. Brain Res 2011;1406:65–73.

    Article  PubMed  CAS  Google Scholar 

  33. Mancuso R, Oliván S, Rando A, Casas C, Osta R, Navarro X. Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 2012;9:814–826.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Penas C, Pascual-Font A, Mancuso R, Forés J, Casas C, Navarro X. Sigma receptor agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. J Neurotrauma 2011;28:831–840.

    Article  PubMed  Google Scholar 

  35. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DCP, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005;11:429–433.

    Article  PubMed  Google Scholar 

  36. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 2004;185:232–240.

    Article  PubMed  Google Scholar 

  37. Ozdinler PH, Benn S, Yamamoto TH, Güzel M, Brown RH, Macklis JD. Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G93A transgenic ALS mice. J Neurosci 2011;31:4166–4177.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. McHanwell S, Biscoe TJ. The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond, B, Biol Sci 1981;293:477–508.

    Article  PubMed  CAS  Google Scholar 

  39. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 2011;29:824–828.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Diaz-Amarilla P, Olivera-Bravo S, Trias E, Cragnolini A, Martinez-Palma L, Cassina P, et al. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2011;108:18126–18131.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA 2008;105:7594–7599.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Sanagi T, Nakamura Y, Suzuki E, Uchino S, Aoki M, Warita H, et al. Involvement of activated microglia in increased vulnerability of motoneurons after facial nerve avulsion in presymptomatic amyotrophic lateral sclerosis model rats. Glia 2012;60:782–793.

    Article  PubMed  Google Scholar 

  43. Han S-H. Potential role of sirtuin as a therapeutic target for neurodegenerative diseases. J Clin Neurol 2009;5:120.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Song C-Y, Guo J-F, Liu Y, Tang B-S. Autophagy and its comprehensive impact on ALS. Int J Neurosci 2012;122:695–703.

    Article  PubMed  CAS  Google Scholar 

  45. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008;105:3374–3379.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Herskovits AZ, Guarente L. Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 2013;23:746–758.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Fonseca-Kelly Z, Nassrallah M, Uribe J, Khan RS, Dine K, Dutt M, et al. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol 2012;3:84.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Nimmagadda VK, Bever CT, Vattikunta NR, Talat S, Ahmad V, Nagalla NK, et al. Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets. J Immunol 2013;190:4595–4607.

    PubMed  CAS  Google Scholar 

  49. Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet 2010;20:261–270.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Jin F, Wu Q, Lu Y-F, Gong Q-H, Shi J-S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. Euro J Pharmacol 2008;600(1-3):78–82.

    Article  CAS  Google Scholar 

  51. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004;305:1010–1013.

    Article  PubMed  CAS  Google Scholar 

  52. Yáñez M, Galán L, Matías-Guiu J, Vela A, Guerrero A, García AG. CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: Protection by resveratrol but not riluzole. Brain Res 2;1423:77–86.

  53. Markert CD, Kim E, Gifondorwa DJ, Childers MK, Milligan CE. A single-dose resveratrol treatment in a mouse model of amyotrophic lateral sclerosis. J Med Food 2010;13:1081–1085.

    Article  PubMed  CAS  Google Scholar 

  54. Han S, Choi JR, Shin KS, Kang SJ. Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res 2012;1483:112–117.

    Article  PubMed  CAS  Google Scholar 

  55. Amri A, Chaumeil JC, Sfar S, Charrueau C. Administration of resveratrol: what formulation solutions to bioavailability limitations?. J Control Release 2012;158:182–193.

    Article  PubMed  CAS  Google Scholar 

  56. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013;14:248–264.

    Article  PubMed  CAS  Google Scholar 

  57. Chen S, Zhang X, Song L, Le W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathology 2011;22:110–116.

    Article  CAS  Google Scholar 

  58. Li L, Zhang X, Le W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008;4:290–293.

    PubMed  CAS  Google Scholar 

  59. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 2010;1:e10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787–795.

    Article  PubMed  CAS  Google Scholar 

  61. Boillee S, Vandevelde C, Cleveland D. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006;52:39–59.

    Article  PubMed  CAS  Google Scholar 

  62. Shi P, Gal J, Kwinter DM, Liu X, Zhu H. Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochimica Biophysica Acta 2010; 1802:45–51.

    Google Scholar 

  63. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 2011;7:616–630.

    Article  PubMed  CAS  Google Scholar 

  64. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, et al. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 1998;156:65–72.

    Article  PubMed  CAS  Google Scholar 

  65. Fuchs A, Kutterer S, Mühling T, Duda J, Schütz B, Liss B, et al. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol (Lond) 2013;591:2723–2745.

    CAS  Google Scholar 

  66. Jung C, Higgins CMJ, Xu Z. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 2002;83:535–545.

    Article  PubMed  CAS  Google Scholar 

  67. Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 1999;18:3241–250.

    Google Scholar 

  68. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006;127:1109–1122.

    Article  PubMed  CAS  Google Scholar 

  69. Khandelwal PJ, Herman AM, Moussa CEH. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011;238:1–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Yong VW, Rivest S. Taking advantage of the systemic immune system to cure brain diseases. Neuron 2009;64:55–60.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang F, Liu J, Shi J-S. Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Euro J Pharmacol 2010;636:1–7.

    Article  CAS  Google Scholar 

  72. Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, et al. Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 2005;5:185–193.

    Article  PubMed  CAS  Google Scholar 

  73. Candelario-Jalil E, de Oliveira A, Gräf S, Bhatia HS, Hüll M, Muñoz E, et al. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflamm 2007;4:25.

    Article  CAS  Google Scholar 

  74. Heynekamp JJ, Weber WM, Hunsaker LA, Gonzales AM, Orlando RA, Deck LM, et al. Substituted trans-stilbenes, including analogues of the natural product resveratrol, inhibit the human tumor necrosis factor alpha-induced activation of transcription factor nuclear factor kappaB. J Med Chem 2006;49:7182–7189.

    Article  PubMed  CAS  Google Scholar 

  75. Meng X-L, Yang JY, Chen G-L, Wang L-H, Zhang L-J, Wang S, et al. Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem Biol Interact 2008;174:51–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PI1001787 and PI111532, TERCEL and CIBERNED funds from the Fondo de Investigación Sanitaria of Spain, grant SAF2009-12495 from the Ministerio de Ciencia e Innovación of Spain, FEDER funds, and Action COST-B30 of the EC. We thank the technical help of Jessica Jaramillo and Marta Morell. RM is the recipient of a predoctoral fellowship from the Ministerio de Educación of Spain.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Navarro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancuso, R., del Valle, J., Modol, L. et al. Resveratrol Improves Motoneuron Function and Extends Survival in SOD1G93A ALS Mice. Neurotherapeutics 11, 419–432 (2014). https://doi.org/10.1007/s13311-013-0253-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0253-y

Keywords

Navigation