Skip to main content

Advertisement

Log in

Arsenite inhibits the function of CD133+ CD13+ liver cancer stem cells by reducing PML and Oct4 protein expression

  • Published:
Tumor Biology

Abstract

Cancer stem cells (CSCs) can form new tumors and contribute to post-operative recurrence and metastasis. We showed that CD133+CD13+ hepatocytes isolated from HuH7 cells and primary HCC cells display biochemical and functional characteristics typical of CSCs, suggesting that CD133+CD13+ hepatocytes in primary HCC tumors function as CSCs. We also found that arsenite treatment reduced the viability and stemness of CD133+CD13+ hepatocytes, enhanced the sensitivity of HuH7 cells to pirarubicin, and reduced the tumorigenicity of CD133+CD13+ hepatocytes xenografts in mice. The effects of sodium arsenite treatment in CD133+CD13+ hepatocytes were mediated by the post-transcriptional suppression of PML expression and the inhibition of Oct4, Sox2, and Klf4 expression at the transcriptional level. Incomplete rescue of Oct4 expression in arsenic-treated cells ectopically expressing an siRNA-resistant PML transcript suggested that OCT4 regulation in liver CSCs involves other factors in addition to PML. Our findings provide evidence of a specific role for PML in regulating Oct4 levels in liver CSCs and highlight the clinical importance of arsenic for improving the efficacy of other chemotherapeutic agents and the prevention of post-operative HCC recurrence and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D., Forman, D. and Bray, F. 2013. GLOBOCAN 2012 v1. 0. Cancer incidence and mortality worldwide. IARC CancerBase (11).

  3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(3):225–49.

    Article  PubMed  Google Scholar 

  4. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2009;362(4):1907–17.

    Google Scholar 

  5. Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci. 2012b;8(7):992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120(9):3326–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohga K, Tatsumi T, Takehara T, Tsunematsu H, Shimizu S, Yamamoto M, Sasakawa A, Miyagi T, Hayashi N. Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma. J Hepatol. 2010;52(6):872–9.

    Article  CAS  PubMed  Google Scholar 

  8. Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 2010;12:R94. doi:10.1186/bcr2773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du Z, Qin R, Wei C, Wang M, Shi C, Tian R, Peng C. Pancreatic cancer cells resistant to chemoradiotherapy rich in "stem-cell-like" tumor cells. Dig Dis Sci. 2011;56(3):741–50.

    Article  CAS  PubMed  Google Scholar 

  10. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.

    Article  CAS  PubMed  Google Scholar 

  11. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature. 2012;488(7412):527–30.

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012a;488(7412):522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337(6095):730–5.

    Article  CAS  PubMed  Google Scholar 

  14. Jeong CH, Cho YY, Kim MO, Kim SH, Cho EJ, Lee SY, Jeon YJ, Lee KY, Yao K, Keum YS, et al. Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells. 2010;28(12):2141–50.

    Article  CAS  PubMed  Google Scholar 

  15. Karwacki-Neisius V, Goke J, Osorno R, Halbritter F, Ng JH, Weisse AY, Wong FC, Gagliardi A, Mullin NP, Festuccia N, et al. Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell. 2013;12(5):531–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  18. Christ B, Stock P, Dollinger MM. CD13: waving the flag for a novel cancer stem cell target. Hepatology. 2011;53(4):1388–90.

    Article  CAS  PubMed  Google Scholar 

  19. Kim HM, Haraguchi N, Ishii H, Ohkuma M, Okano M, Mimori K, Eguchi H, Yamamoto H, Nagano H, Sekimoto M, et al. Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon. Ann Surg Oncol. 2012;19 Suppl 3:S539–48.

    Article  PubMed  Google Scholar 

  20. Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest. 2013;123(5):1911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 2010;18(1):88–98.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science. 2010;328(5975):240–3.

    Article  CAS  PubMed  Google Scholar 

  23. Liu ZM, Tseng JT, Hong DY, Huang HS. Suppression of TG-interacting factor sensitizes arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Biochem J. 2011;438(2):349–58.

    Article  CAS  PubMed  Google Scholar 

  24. Qu F, Hao X, Qin S, Liu J, Sui G, Chen Q, Qu T, Zhang H, Sun Y. Multicenter phase II clinical trial of arsenic trioxide injection in the treatment of primary hepatocarcinoma. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2011;33(9):697–701.

    CAS  Google Scholar 

  25. Wei J, Ye C, Liu F, Wang W. All-trans retinoic acid and arsenic trioxide induce apoptosis and modulate intracellular concentrations of calcium in hepatocellular carcinoma cells. J Chemother. 2014;26(6):348–52.

    Article  CAS  PubMed  Google Scholar 

  26. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453(7198):1072–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakahara F, Weiss CN, Ito K. The role of PML in hematopoietic and leukemic stem cell maintenance. Int J Hematol. 2014;100(1):18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157(3):580–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang KZ, Zhang QB, Zhang QB, Sun HC, Ao JY, Chai ZT, Zhu XD, Lu L, Zhang YY, Bu Y, et al. Arsenic trioxide induces differentiation of CD133+ hepatocellular carcinoma cells and prolongs posthepatectomy survival by targeting GLI1 expression in a mouse model. J Hematol Oncol. 2014;7(1):28. doi:10.1186/1756-8722-7-28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pinton P, Giorgi C, Pandolfi PP. The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ. 2011;18(9):1450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol. 2008;10(5):547–55.

    Article  CAS  PubMed  Google Scholar 

  32. Chuang YS, Huang WH, Park SW, Persaud SD, Hung CH, Ho PC, Wei LN. Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter. Stem Cells. 2011;29(4):660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koo BS, Lee SH, Kim JM, Huang S, Kim SH, Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH, et al. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene. 2015;34(18):2317–24.

    Article  CAS  PubMed  Google Scholar 

  34. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511(7508):246–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Chinese Medicine Technological Item of Municipal Health Bureau of Chongqing City (grant no. ZY20132047).

Author contributions

S.J. designed the study, analyzed data, and wrote the paper. H.T. collected HCC samples and performed the immunohistochemical and immunofluorescence analyses. Y.J. was involved in designing the study and performed the western blotting. Y.K. performed the qRT-PCR and flow cytometry analyses. Z.T. performed the tumor sphere, cell proliferation, and in vivo tumorigenesis assays. All of the authors discussed the results and contributed to the content of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilong Jin.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Jin, Y., Jin, S. et al. Arsenite inhibits the function of CD133+ CD13+ liver cancer stem cells by reducing PML and Oct4 protein expression. Tumor Biol. 37, 14103–14115 (2016). https://doi.org/10.1007/s13277-016-5195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5195-7

Keywords

Navigation