Skip to main content

Advertisement

Log in

Pancreatic Cancer Cells Resistant to Chemoradiotherapy Rich in “Stem-Cell-Like” Tumor Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Tumor resistance to chemoradiation therapy is partly attributed to the presence of apoptosis-resistant cancer stem cells (CSCs). Chemoradiation therapy can enrich CSCs by killing apoptosis-susceptible cancer cells.

Aim

Our preliminary study showed chemoradiation-resistant pancreatic cancer cells to have some CSC characteristics, and to undergo epithelial–mesenchymal transition (EMT); we aimed to verify that study’s implication that chemoradiation-resistant subpopulations are enriched with “stem-cell-like” tumor cells, which may be linked to EMT.

Methods

Four pancreatic cancer cell lines were cultured in gemcitabine with synchronous radiotherapy to obtain resistant subpopulations. Morphological changes were observed under microscope; migration and invasiveness were assessed by Transwell tests. Protein expression was determined by immunoblotting. Pancreatic CSC markers were studied using fluorescence-activated cell sorting analyses. Colony-formation tests, tumor sphere formation assays, and tumor xenografts in BALB/C nude mice were used to evaluate “stemness” in resistant cells.

Results

Resistant cells expressed more antiapoptotic protein Bcl-2, apoptosis-inhibitory protein survivin, and stem cell markers Oct4, ABCG2, CD24, and CD133, were more tumorigenic in vitro and in vivo, and showed phenotypic and molecular changes consistent with EMT, including upregulation of vimentin and downregulation of E-cadherin. They were also more invasive and migratory.

Conclusions

We found chemoradiation-resistant pancreatic cancer cells to be similar to CSCs and to undergo EMT, suggesting that chemoradiation resistance-induced EMT is linked to CSC generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–648.

    Article  CAS  PubMed  Google Scholar 

  2. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  3. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–5828.

    CAS  PubMed  Google Scholar 

  4. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–3988.

    Article  CAS  PubMed  Google Scholar 

  5. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–1037.

    Article  CAS  PubMed  Google Scholar 

  6. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–323.

    Article  CAS  PubMed  Google Scholar 

  7. Massard C, Deutsch E, Soria JC. Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol. 2006;17:1620–1624.

    Article  CAS  PubMed  Google Scholar 

  8. Lobo NA, Shimono Y, Qian D, et al. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–699.

    Article  CAS  PubMed  Google Scholar 

  9. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–284.

    Article  CAS  PubMed  Google Scholar 

  10. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–554.

    Article  CAS  PubMed  Google Scholar 

  11. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–760.

    Article  CAS  PubMed  Google Scholar 

  12. Huguet F, Girard N, Guerche CS, et al. Chemoradiotherapy in the management of locally advanced pancreatic carcinoma: a qualitative systematic review. J Clin Oncol. 2009;27:2269–2277.

    Article  CAS  PubMed  Google Scholar 

  13. Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol. 2008;26:2806–2812.

    Article  PubMed  Google Scholar 

  14. Chang Q, Qin R, Huang T, et al. Effect of antisense hypoxia-inducible factor 1alpha on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas. 2006;32:297–305.

    Article  CAS  PubMed  Google Scholar 

  15. Hugo H, Ackland ML, Blick T, et al. Epithelial mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213:374–383.

    Article  CAS  PubMed  Google Scholar 

  16. Min C, Eddy SF, Sherr DH, et al. NF-κB and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008;104:733–744.

    Article  CAS  PubMed  Google Scholar 

  17. Acloque H, Thiery JP, Nieto MA. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep. 2008;9:322–326.

  18. Eastham AM, Spencer H, Soncin F, et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res. 2007;67:11254–11262.

    Article  CAS  PubMed  Google Scholar 

  19. Yang AD, Fan F, Camp ER, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res. 2006;12:4147–4153.

    Article  CAS  PubMed  Google Scholar 

  20. Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol. 2007;31:277–283.

    CAS  PubMed  Google Scholar 

  21. Hiscox S, Jiang WG, Obermeier K, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of h-catenin phosphorylation. Int J Cancer. 2006;118:290–301.

    Article  CAS  PubMed  Google Scholar 

  22. Shah AN, Gallick GE. Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anticancer Drugs. 2007;18:371–375.

    Article  CAS  PubMed  Google Scholar 

  23. Jung JW, Hwang SY, Hwang JS, et al. Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer. 2007;43:1214–1224.

    Article  CAS  PubMed  Google Scholar 

  24. Andarawewa KL, Erickson AC, Chou WS, et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res. 2007;67:8662–8670.

    Article  CAS  PubMed  Google Scholar 

  25. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–715.

    Article  CAS  PubMed  Google Scholar 

  26. Morel AP, Lièvre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE. 2008;3:e2888.

    Article  PubMed  Google Scholar 

  27. Du ZY, Qin RY, Xia W, et al. Gene transfer of somatostatin receptor type 2 by intratumoral injection inhibits established pancreatic carcinoma xenografts. World J Gastroenterol. 2005;11:516–520.

    CAS  PubMed  Google Scholar 

  28. Simeone DM. Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res. 2008;14:5646–5648.

    Article  CAS  PubMed  Google Scholar 

  29. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  30. Yu F, Yao H, Zhu P, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–1123.

    Article  CAS  PubMed  Google Scholar 

  31. Olempska M, Eisenach PA, Ammerpohl O, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int. 2007;6:92–97.

    CAS  PubMed  Google Scholar 

  32. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028–1034.

    Article  CAS  PubMed  Google Scholar 

  33. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24:506–513.

    Article  CAS  PubMed  Google Scholar 

  34. Wu C, Wei Q, Utomo V, et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res. 2007;67:8216–8222.

    Article  CAS  PubMed  Google Scholar 

  35. Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006;44:240–251.

    Article  CAS  PubMed  Google Scholar 

  36. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    Article  PubMed  Google Scholar 

  37. Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–4320.

    Article  CAS  PubMed  Google Scholar 

  38. Tai MH, Chang CC, Kiupel M, et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005;26:495–502.

    Article  CAS  PubMed  Google Scholar 

  39. Guo Y, Mantel C, Hromas RA, et al. Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress: effects associated with Stat3/survivin. Stem Cells. 2008;26:30–34.

    Article  CAS  PubMed  Google Scholar 

  40. Kami K, Doi R, Koizumi M, et al. Survivin expression is a prognostic marker in pancreatic cancer patients. Surgery. 2004;136:443–448.

    Article  PubMed  Google Scholar 

  41. Rodel F, Hoffmann J, Distel L, et al. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res. 2005;65:4881–4887.

    Article  PubMed  Google Scholar 

  42. Kami K, Doi R, Koizumi M, et al. Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery. 2005;138:299–305.

    Article  PubMed  Google Scholar 

  43. Liu WS, Yan HJ, Qin RY, et al. siRNA directed against survivin enhances pancreatic cancer cell gemcitabine chemosensitivity. Dig Dis Sci. 2009;54:89–96.

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Deng W, Lobo-Ruppert SM, et al. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene. 2007;26:4489–4498.

    Article  CAS  PubMed  Google Scholar 

  45. Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67:2187–2196.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Z, Li Y, Kong D, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69:2400–2407.

    Article  CAS  PubMed  Google Scholar 

  47. Sahlgren C, Gustafsson MV, Jin S, et al. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 2008;105:6392–6397.

    Article  CAS  PubMed  Google Scholar 

  48. Kurrey NK, Jalgaonkar SP, Joglekar AV, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009;27:2059–2068.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Postdoctoral Science Foundation, China (grant no. 20090450702) and the Shanghai Municipal Postdoctoral Funds (grant no. 09R21415100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghong Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Qin, R., Wei, C. et al. Pancreatic Cancer Cells Resistant to Chemoradiotherapy Rich in “Stem-Cell-Like” Tumor Cells. Dig Dis Sci 56, 741–750 (2011). https://doi.org/10.1007/s10620-010-1340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1340-0

Keywords

Navigation