Skip to main content

Advertisement

Log in

A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Cerenkov luminescence imaging (CLI) is an emerging optical imaging technique, which has been widely investigated for biological imaging. In this study, we proposed to integrate the CLI technique with the radionuclide treatment as a “see-and-treat” approach, and evaluated the performance of the pinhole collimator-based CLI technique. The detection of Cerenkov luminescence during radionuclide therapy was simulated using the Monte Carlo technique for breast cancer treatment as an example. Our results show that with the pinhole collimator-based configuration, the location, size and shape of the tumors can be clearly visualized on the Cerenkov luminescence images of the breast phantom. In addition, the CLI of multiple tumors can reflect the relative density of radioactivity among tumors, indicating that the intensity of Cerenkov luminescence is independent of the size and shape of a tumor. The current study has demonstrated the high-quality performance of the pinhole collimator-based CLI in breast tumor imaging for the “see-and-treat” multi-modality treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cherenkov PA (1934) Visible emission of clean liquids by action of γ radiation. Dokl Akad Nauk SSSR 2:451

    CAS  Google Scholar 

  2. Spinelli AE, D’Ambrosio D, Calderan L et al (2010) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55(2):483–495. https://doi.org/10.1088/0031-9155/55/2/010

    Article  PubMed  Google Scholar 

  3. Boschi F, Spinelli AE, D’Ambrosio D et al (2009) Combined optical and single photon emission imaging: preliminary results. Phys Med Biol 54(23):L57–L62. https://doi.org/10.1088/0031-9155/54/23/L01

    Article  PubMed  Google Scholar 

  4. Spinelli AE, Lo Meo S, Calandrino R et al (2011) Optical imaging of Tc-99m-based tracers: in vitro and in vivo results. J Biomed Opt 16(11):116023. https://doi.org/10.1117/1.3653963

    Article  CAS  PubMed  Google Scholar 

  5. Holland JP, Normand G, Ruggiero A et al (2011) Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging 10(3):177–186

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao X, Li Y, Zhan YH et al (2016) Removing noises induced by gamma radiation in cerenkov luminescence imaging using a temporal median filter. Biomed Res Int. https://doi.org/10.1155/2016/7948432

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu HG, Ren G, Miao Z et al (2010) Molecular optical imaging with radioactive probes. Plos ONE 5 (3):e9470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boschi F, Calderan L, D’Ambrosio D et al (2011) In vivo F-18-FDG tumour uptake measurements in small animals using Cerenkov radiation. Eur J Nucl Med Mol Imaging 38(1):120–127

    Article  PubMed  Google Scholar 

  9. Robertson R, Germanos MS, Li C et al (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54(16):N355–N365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spinelli AE, Boschi F, D’Ambrosio D et al (2011) Cherenkov radiation imaging of beta emitters: in vitro and in vivo results. Nucl Instrum Methods A 648:S310–S312

    Article  CAS  Google Scholar 

  11. Hu ZH, Ma XW, Qu XC et al (2012) Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. Plos ONE 7(5):e37623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu HG, Carpenter CM, Jiang H et al (2012) Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med 53(10):1579–1584

    Article  PubMed  PubMed Central  Google Scholar 

  13. Spinelli AE, Ferdeghini M, Cavedon C et al (2013) First human Cerenkography. J Biomed Opt 18(2):020502.

    Article  CAS  Google Scholar 

  14. Klein JS, Mitchell GS, Cherry SR (2017) Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery. Phys Med Biol 62(10):4183–4201. https://doi.org/10.1088/1361-6560/aa6641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu Z, Liang J, Yang W et al (2010) Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express 18(24):24441–24450. https://doi.org/10.1364/OE.18.024441

    Article  CAS  PubMed  Google Scholar 

  16. Gill RK, Mitchell GS, Cherry SR (2015) Computed Cerenkov luminescence yields for radionuclides used in biology and medicine. Phys Med Biol 60(11):4263–4280

    Article  CAS  PubMed  Google Scholar 

  17. Allison J, Amako K, Apostolakis J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278

    Article  Google Scholar 

  18. Agostinelli S, Allison J, Amako K et al (2003) GEANT4-a simulation toolkit. Nucl Instrum Methods A 506(3):250–303

    Article  CAS  Google Scholar 

  19. Ai Y, Tang X, Shu D et al (2017) Measurement of dose in radionuclide therapy by using Cerenkov radiation. Australas Phys Eng Sci Med 40(3):695–705. https://doi.org/10.1007/s13246-017-0579-6

    Article  PubMed  Google Scholar 

  20. Geng CR, Tang XB, Hou XX et al (2014) Development of Chinese hybrid radiation adult phantoms and their application to external dosimetry. Sci China Technol Sci 57(4):713–719

    Article  Google Scholar 

  21. Guitton TG, Kinaci A, Ring D (2013) Diagnostic accuracy of 2- and 3-dimensional computed tomography and solid modeling of coronoid fractures. J Shoulder Elbow Surg 22(6):782–786

    Article  PubMed  Google Scholar 

  22. Bethesda MD (1992) Photon, electron, proton and neutron interaction data for body tissues. ICRU 46

  23. Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP 32:1–277

    Article  Google Scholar 

  24. Ghosh N, Mohanty SK, Majumder SK et al (2001) Measurement of optical transport properties of normal and malignant human breast tissue. Appl Opt 40(1):176–184

    Article  CAS  PubMed  Google Scholar 

  25. Bashkatov AN, Genina EA, Kochubey VI et al (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543–2555

    Article  CAS  Google Scholar 

  26. Bashkatov AN, Genina EA, Tuchin VV (2011) Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci 4(1):9–38

    Article  Google Scholar 

  27. Helo Y, Rosenberg I, D’Souza D et al (2014) Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy. Phys Med Biol 59(8):1963–1978

    Article  PubMed  Google Scholar 

  28. Sandell JL, Zhu TC (2011) A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics 4(11–12):773–787

    Article  PubMed  PubMed Central  Google Scholar 

  29. Balkin ER, Kenoyer A, Orozco JJ et al (2014) In vivo localization of Y-90 and Lu-177 radioimmunoconjugates using Cerenkov luminescence imaging in a disseminated murine leukemia model. Cancer Res 74(20):5846–5854. https://doi.org/10.1158/0008-5472.can-14-0764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altabella L, Boschi F, Spinelli AE (2016) Pixel-based parametric source depth map for Cerenkov luminescence imaging. J Instrum 11:10. https://doi.org/10.1088/1748-0221/11/01/c01048

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11805100), and the National Key Research and Development Program (Grant No. 2016YFE0103600 and No. 2017YFC0107700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, C., Ai, Y., Tang, X. et al. A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment. Australas Phys Eng Sci Med 42, 481–487 (2019). https://doi.org/10.1007/s13246-019-00744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00744-7

Keywords

Navigation