Skip to main content
Log in

Measurement of dose in radionuclide therapy by using Cerenkov radiation

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This work aims to determine the relationship between Cerenkov photon emission and radiation dose from internal radionuclide irradiation. Water and thyroid phantoms were used to simulate the distribution of Cerenkov photon emission and dose deposition through Monte Carlo method. The relationship between Cerenkov photon emission and dose deposition was quantitatively analyzed. A neck phantom was also used to verify Cerenkov photon detection for thyroid radionuclide therapy. Results show that Cerenkov photon emission and dose deposition exhibit the same distribution pattern in water phantom, and this relative distribution relationship also existed in the thyroid phantom. Moreover, Cerenkov photon emission exhibits a specific quantitative relation to dose deposition. For thyroid radionuclide therapy, only a part of Cerenkov photon produced by thyroid could penetrate the body for detection; therefore, the use of Cerenkov radiation for measurement of radionuclide therapy dose may be more suitable for superficial tumors. This study demonstrated that Cerenkov radiation has the potential to be used for measuring radiation dose for radionuclide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Flower MA, Chittenden SJ (1993) Unsealed source therapy. In: Williams JR, Thwaiters DI (eds) Radiotherapy physics in practice. Oxford University Press, Oxford, pp 253–274

    Google Scholar 

  2. Giap HB, Macey DJ, Bayouth JE, Boyer AL (1995) Validation of a dose-point kernel convolution technique for internal dosimetry. Phys Med Biol 40:365–381

    Article  CAS  PubMed  Google Scholar 

  3. Furhang EE, Chui CS, Sgouros G (1996) A Monte Carlo approach to patient specific-dosimetry. Med Phys 23:1523–1529. doi:10.1118/1.597882

    Article  CAS  PubMed  Google Scholar 

  4. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36:1489–1513

    CAS  PubMed  Google Scholar 

  5. Giap HB, Macey DJ, Podoloff DA (1995) Development of a SPECT-based three-dimensional treatment planning system for radioimmunotherapy. J Nucl Med 36:1885–1894

    CAS  PubMed  Google Scholar 

  6. Glaser AK, Andreozzi JM, Davis SC, Zhang R, Pogue BW, Fox CJ, Gladstone DJ (2014) Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation. Med Phys 41:062102. doi:10.1118/1.4875704

    Article  PubMed  PubMed Central  Google Scholar 

  7. Glaser AK, Zhang R, Gladstone DJ, Pogue BW (2014) Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose. Phys Med Biol 59:3789–3811. doi:10.1088/0031-9155/59/14/3789

    Article  PubMed  Google Scholar 

  8. Shu D, Tang X, Geng C, Gong C, Chen D (2016) Determination of the relationship between dose deposition and Cerenkov photons in homogeneous and heterogeneous phantoms during radiotherapy using Monte Carlo method. J Radioanal Nucl Chem 308:187–193. doi:10.1007/s10967-015-4316-x

    Article  CAS  Google Scholar 

  9. Glaser AK, Davis SC, McClatchy DM, Zhang R, Pogue BW, Gladstone DJ (2013) Projection imaging of photon beams by the Čerenkov effect. Med Phys 40:012101. doi:10.1118/1.4770286

    Article  PubMed  Google Scholar 

  10. Volotskova O, Sun C, Stafford JH, Koh AL, Ma X, Cheng Z, Cui B, Partx G, Xing L (2015) Efficient radioisotope energy transfer by gold nanoclusters for molecular imaging. Small 11:4002–4008. doi:10.1002/small.201500907

    Article  CAS  PubMed  Google Scholar 

  11. Hu Z, Qu Y, Wang K, Zhang X, Zha J, Song T et al (2015) In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat commun. doi:10.1038/ncomms8560

    Google Scholar 

  12. Shimamoto M, Gotoh K, Hasegawa K, Kojima A (2016) Hybrid light imaging using Cerenkov luminescence and liquid scintillation for preclinical optical imaging in vivo. Mol Imaging Biol 18:500–509. doi:10.1007/s11307-016-0928-y

    Article  CAS  PubMed  Google Scholar 

  13. Spinelli AE, D’Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2009) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55:483–495. doi:10.1088/0031-9155/55/2/010

    Article  PubMed  Google Scholar 

  14. Lohrmann C, Zhang H, Thorek DL, Desai P, Zanzonico PB et al (2015) Cerenkov luminescence imaging for radiation dose calculation of a 90Y-labeled gastrin-releasing peptide receptor antagonist. J Nucl Med 56:805–811. doi:10.2967/jnumed.114.149054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA et al (2006) Geant4 developments and applications. IEEE T Nucl Sci 53:270–278. doi:10.1109/TNS.2006.869826

    Article  Google Scholar 

  16. Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P et al (2003) GEANT4—a simulation toolkit. Nucl Instrum Meth A 506:250–303. doi:10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  17. Geng C, Tang X, Hou X, Shu D, Chen D (2014) Development of Chinese hybrid radiation adult phantoms and their application to external dosimetry. Sci China Technol Sci 57:713–719. doi:10.1007/s11431-014-5480-x

    Article  Google Scholar 

  18. International Commission on Radiation Units and Measurements (ICRU) Photon, Electron, Proton and Neutron Interaction Data for Body Tissues (1992). ICRU Report 46

  19. International Commission on Radiological Protection (ICRP) Basic anatomical and physiological data for use in radiological protection reference values (2002). ICRP Publication 89, Ann ICRP 32

  20. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D 38:2543–2555. doi:10.1088/0022-3727/38/15/004

    Article  CAS  Google Scholar 

  21. Bashkatov AN, Genina EA, Tuchin VV (2011) Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Heal Sci 4:9–38. doi:10.1142/S1793545811001319

    Article  Google Scholar 

  22. Helo Y, Rosenberg I, D’Souza D, MacDonald L, Speller R, Royle G, Gibson A (2014) Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy. Phys Med Biol 59:1963–1978. doi:10.1088/0031-9155/59/8/1963

    Article  PubMed  Google Scholar 

  23. Klein JS, Mitchell GS, Cherry SR (2017) Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery. Phys Med Biol 62:4183–4201. doi:10.1088/1361-6560/aa6641

    Article  PubMed  Google Scholar 

  24. Zhang R, Fox CJ, Glaser AK, Gladstone DJ, Pogue BW (2013) Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms. Phys Med Biol 58:5477–5493. doi:10.1088/0031-9155/58/16/5477

    Article  PubMed  PubMed Central  Google Scholar 

  25. Andreozzi JM, Zhang R, Gladstone DJ, Williams BB, Glaser AK, Pogue BW, Jarvis LA (2016) Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy. Med Phys 43:993–1002. doi:10.1118/1.4939880

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang R, Glaser AK, Gladstone DJ, Fox CJ, Pogue BW (2013) Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage X-ray beam. Med Phys 40:101914. doi:10.1118/1.4821543

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jang KW, Yagi T, Pyeon CH, Yoo WJ, Shin SH, Jeong C, Min BJ, Shin D, Misawa T, Lee B (2013) Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry. J Biomed Opt 18:027001. doi:10.1117/1.JBO.18.2.027001

    Article  Google Scholar 

  28. Glaser AK, Voigt WH, Davis SC, Zhang R, Gladstone DJ, Pogue BW (2013) Three-dimensional Čerenkov tomography of energy deposition from ionizing radiation beams. Opt Lett 38:634–636

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11475087), the National Key Research and Development Program (Grant No. 2016YFE0103600), the Foundation of Graduate Innovation Center in NUAA (Grant Nos. kfjj20160610, kfjj20170617), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., Tang, X., Shu, D. et al. Measurement of dose in radionuclide therapy by using Cerenkov radiation. Australas Phys Eng Sci Med 40, 695–705 (2017). https://doi.org/10.1007/s13246-017-0579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0579-6

Keywords

Navigation