Skip to main content
Log in

Isolation and characterization of thermotolerant yeasts for the production of second-generation bioethanol

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to isolate, identify, and characterize the thermotolerant yeasts for use in high-temperature ethanol fermentation. Thermotolerant yeasts were isolated and screened from soil samples collected from the Mekong Delta, Vietnam, using the enrichment method. Classification and identification of the selected thermotolerant yeasts were performed using matrix-assisted laser desorption ionization/time-of-fight mass spectrometry (MALDI-TOF/MS) and nucleotide sequencing of the D1/D2 domain of the 26S rDNA and the internal transcribed spacer (ITS) 1 and 2 regions. The ethanol production by the selected thermotolerant yeast was carried out using pineapple waste hydrolysate (PWH) as feedstock. A total of 174 yeast isolates were obtained from 80 soil samples collected from 13 provinces in the Mekong Delta, Vietnam. Using MALDI-TOF/MS and nucleotide sequencing of the D1/D2 domain and the ITS 1 and 2 regions, six different yeast species were identified, including Meyerozyma caribbica, Saccharomyces cerevisiae, Candida tropicalis, Torulaspora globosa, Pichia manshurica, and Pichia kudriavzevii. Among the isolated thermotolerant yeasts, P. kudriavzevii CM4.2 displayed great potential for high-temperature ethanol fermentation. The maximum ethanol concentration (36.91 g/L) and volumetric ethanol productivity (4.10 g/L h) produced at 45 °C by P. kudriavzevii CM4.2 were achieved using PWH containing 103.08 g/L of total sugars as a feedstock. These findings clearly demonstrate that the newly isolated thermotolerant yeast P. kudriavzevii CM4.2 has a high potential for second-generation bioethanol production at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aditiya HB, Chong WT, Mahlia TMI, Sebayang AH, Berawi MA, Nur H (2016) Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: a review. Waste Manag 47(Pt A):46–61

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sust Energ Rev 51:699–717

    Article  CAS  Google Scholar 

  • Birch RM, Walker GM (2000) Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzym Microb Technol 26:678–687

    Article  CAS  Google Scholar 

  • Carrillo-Nieves D, Alanís MJR, de la Cruz Quiroz R, Ruiz HA, Lqbal HMN, Parra-Saldívar R (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew Sust Energ Rev 102:63–74

    Article  CAS  Google Scholar 

  • Chamnipa N, Thanonkeo S, Klanrit P, Thanonkeo P (2018) The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Braz J Microbiol 49:378–391

    Article  CAS  PubMed  Google Scholar 

  • Charoensopharat K, Thanonkeo P, Thanonkeo S, Yamada M (2015) Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Anton van Leeuwenhoek 108:173–190

    Article  CAS  Google Scholar 

  • Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, Bui U, Limaye AP, Cookson BT (2001) Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol 39:4042–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DH, Park EH, Kim MD (2017) Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Sci Biotechnol 26:1357–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249

    Article  CAS  Google Scholar 

  • Deesuth O, Laopaiboon P, Jaisil P, Laopaiboon L (2012) Optimization of nitrogen and metal ions supplementation for very high gravity bioethanol fermentation from sweet sorghum juice using an orthogonal array design. Energies 5:3178–3197

    Article  CAS  Google Scholar 

  • Faga BA, Wilkins MR, Banat IM (2010) Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol 101:2273–2279

    Article  CAS  PubMed  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  PubMed  Google Scholar 

  • Gombert AK, van Maris AJA (2015) Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr Opin Biotechnol 33:81–86

    Article  CAS  PubMed  Google Scholar 

  • Hamdouche Y, Guehi T, Durand N, Kedjebo KBD, Montet D, Meile JC (2015) Dynamics of microbial ecology during cocoa fermentation and drying: towards the identification of molecular markers. Food Control 48:117–122

    Article  CAS  Google Scholar 

  • Hellström AM, Almgren A, Carlsson NG, Svanberg U, Andlid TA (2012) Degradation of phytate by Pichia kudriavzevii TY13 and Hanseniaspora guilliermondii TY14 in Tanzanian togwa. Int J Food Microbiol 153:73–77

    Article  CAS  PubMed  Google Scholar 

  • Izmirlioglu G, Demirci A (2015) Enhanced bio-ethanol production from industrial potato waste by statistical medium optimization. Int J Mol Sci 16:24490–24505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewkrajay C, Dethoup T, Limtong S (2014) Ethanol production from cassava using a newly isolated thermotolerant yeast strain. ScienceAsia 40:268–277

    Article  Google Scholar 

  • Kaur U, Oberoi HS, Bhargav VK, Sharma-Shivappa R, Dhaliwal SS (2012) Ethanol production from alkali- and ozone-treated cotton stalks using thermotolerant Pichia kudriavzevii HOP-1. Ind Crop Prod 37:219–226

    Article  CAS  Google Scholar 

  • Keo-oudone C, Nitiyon S, Sotitham P, Tani A, Lertwattanasakul N, Yuangsaard N, Bounphanmy S, Limtong S, Yamada M (2016) Isolation and characterization of thermotolerant ethanol-fermenting yeasts from Laos and application of whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis for their quick identification. Afr J Biotechnol 15:153–164

    Article  CAS  Google Scholar 

  • Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: a potential source for bromelain extraction. Food Bioprod Process 90:385–391

    Article  CAS  Google Scholar 

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2:128–149

    Article  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier B.V, San Diego, pp 87–110

    Chapter  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  PubMed  Google Scholar 

  • Lorliam W, Akaracharanya A, Jindamorakot S, Suwannarangsee S, Tanasupawat S (2013) Characterization of xylose-utilizing yeasts isolated from herbivore faeces in Thailand. ScienceAsia 39:26–35

    Article  CAS  Google Scholar 

  • Mecozzi M (2005) Estimation of total carbohydrate amount in environmental samples by the phenol-sulphuric acid method assisted by multivariate calibration. Chemom Intell Lab Syst 79:84–90

    Article  CAS  Google Scholar 

  • Nuanpeng S, Thanonkeo S, Yamada M, Thanonkeo P (2016) Ethanol production from sweet sorghum juice at high temperatures using a newly isolated thermotolerant yeast Saccharomyces cerevisiae DBKKU Y-53. Energies 9:253

    Article  CAS  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Phong HX, Giang NTC, Nitiyon S, Yamada M, Thanonkeo P, Dung NTP (2016) Ethanol production from molasses at high temperature by thermotolerant yeasts isolated from cocoa. Can Tho Univ J Sci 3:32–37

    Article  Google Scholar 

  • Rachamontree P, Phusantisampan T, Woravutthikul N, Pornwongthong P, Sriariyanun M (2015) Selection of Pichia kudriavzevii strain for the production of single-cell protein from cassava processing waste. Int J Biol Biomol Agric Food Biotechnol Eng 9:481–485

    Google Scholar 

  • Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15:fov053

    Article  CAS  PubMed  Google Scholar 

  • Rani P, Sharma S, Garg FC, Raj K, Wati L (2010) Ethanol production from potato flour by Saccharomyces cerevisiae. Indian J Sci Technol 3:733–736

    CAS  Google Scholar 

  • Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340

    Article  Google Scholar 

  • Rattanapoltee P, Kaewkannetra P (2014) Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Appl Biochem Biotechnol 173:1495–1510

    Article  CAS  PubMed  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56:174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saez JS, Lopes CA, Kirs VE, Sangorrín M (2011) Production of volatile phenols by Pichia manshurica and Pichia membranifaciens isolated from spoiled wines and cellar environment in Patagonia. Food Microbiol 28:503–509

    Article  CAS  PubMed  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  PubMed  Google Scholar 

  • Sankh S, Thiru M, Saran S, Rangaswamy V (2013) Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel 106:690–696

    Article  CAS  Google Scholar 

  • Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38:725–732

    Article  CAS  PubMed  Google Scholar 

  • Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791

  • Talukder AA, Easmin F, Mahmud SA, Yamada M (2016) Thermotolerant yeasts capable of producing bioethanol: isolation from nutural fermented sources, identification and characterization. Biotechnol Biotechnol Equip 30:1106–1114

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani A, Sahin N, Fujitani Y, Kato A, Sato K, Kimbara K (2015) Methylobacterium species promoting rice and barley growth and interaction specificity revealed with whole-cell matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. PLoS One 10:e0129509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Techaparin A, Thanonkeo P, Klanrit P (2017) High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz J Microbiol 48:461–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toivari M, Vehkomäki MLL, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG (2013) Low pH D-xylonate production with Pichia kudriavzevii. Bioresour Technol 133:555–562

    Article  CAS  PubMed  Google Scholar 

  • Tolieng V, Kunthiphun S, Savarajara A, Tanasupawat S (2018) Diversity of yeasts and their ethanol production at high temperature. J Appl Pharm Sci 8:136–142

    Article  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Yuangsaard N, Yongmanitchai W, Yamada M, Limtong S (2013) Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Anton van Leeuwenhoek 103:577–588

    Article  CAS  Google Scholar 

  • Zhang Q, Huo N, Wang Y, Zhang Y, Wang R, Hou H (2017) Aroma-enhancing role of Pichia manshurica isolated from Daqu in the brewing of Shanxi Aged vinegar. Int J Food Prop 20:2169–2179

    Article  CAS  Google Scholar 

  • Zoecklien B, Fugelsang K, Gump B, Nury F (1995) Wine analysis and production. Chapman & Hall, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank the Faculty of Technology, Khon Kaen University, for providing the Scholarship to Phong HX. A portion of this work was supported by the Graduate School, Khon Kaen University, Ministry of Science and Technology of Vietnam (the project contract no. 09/2014/HĐ-NĐT), Japan Society for the Promotion of Science (JSPS), and the international collaboration research project Core-to-Core Program (CCP). The authors thank Prof. Akio Tani for assistance with the MALDI-TOF/MS analysis.

Funding

This study was funded by the Ministry of Science and Technology of Vietnam (the project contract no. 09/2014/HĐ-NĐT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornthap Thanonkeo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.03 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phong, H.X., Klanrit, P., Dung, N.T.P. et al. Isolation and characterization of thermotolerant yeasts for the production of second-generation bioethanol. Ann Microbiol 69, 765–776 (2019). https://doi.org/10.1007/s13213-019-01468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-019-01468-5

Keywords

Navigation