Skip to main content
Log in

Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Mercury is one of the more common and potentially most harmful toxic metals. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. In the present work, genetically engineered Escherichia coli cells, which express four rice metallothionein (MT) isoforms as fusions with glutathione-S-transferase (GST), were tested for their ability to remove mercury. The results showed that the E. coli cells expressing OsMT1, OsMT2, OsMT3, and OsMT4 are able to remove 20, 13.7, 10, and 7 nmol Hg2+/mg (dry weight) from the culture medium, respectively. The recombinant GSTOsMTs were purified using affinity chromatography. The UV absorption spectra and the results of 5,5-dithio-bis-(2-nitrobenzoic) acid (DTNB) assay recorded after the reconstitution of the apo-OsMTs with mercury confirmed that the different OsMT isoforms were able to form mercury complexes in vitro with different binding capacities and different binding strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of E. coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue Organ Cult 107:69–77

    Article  CAS  Google Scholar 

  • Bilecen K, Ozturk UH, Duru AD, Sutlu T, Petoukhov MV, Svergun DI, Koch MH, Sezerman UO, Cakmak I, Sayers Z (2005) Triticum durum metallothionein isolation of the gene and structural characterization of the protein using solution scattering and molecular modeling. J Biol Chem 280:13701–13711

    Article  CAS  PubMed  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn (II) metabolism in prokaryotes. FEMS Microbiol Rev 280:13701–13711

    Google Scholar 

  • CaiY, MaLQ (2003) Metal tolerance, accumulation, and detoxification in plants with emphasis on arsenic in terrestrial plants In: Cai, Y., Braids, O.C. (Eds.), Proceedings of the ACS Symposium Series 835 on Biogeochemistry of Environmentally Important Trace Elements. American Chemistry Society, pp. 95–114

  • Chen S, Wilson DB (1997) Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation 8:97–103

    Article  CAS  PubMed  Google Scholar 

  • Christie NT, Costa M (1984) In vitro assessment of the toxicity of metal compounds. Biol Trace Elem Res 6:139–158

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Wilson DB (2001) Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl Microb Biotechnol 56:276–279

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ejnik J, Robinson J, Zhu J, Försterling FH, Shaw CF, Petering DH (2002) Folding pathway of apo-metallothionein induced by Zn2+, Cd2+ and Co2+. J Inorg Biochem 88:144–152

    Article  CAS  PubMed  Google Scholar 

  • Emoto T, Kurasaki M, Oikawa S, Suzuki-Kurasaki M, Okabe M, Yamasaki F, Kojima Y (1996) Roles of the conserved serines of metallothionein in cadmium binding. Biochem Genet 34:239–251

    Article  CAS  PubMed  Google Scholar 

  • Faller P, Ctortecka B, Tröger W, Butz T (2000) Optical and TDPAC spectroscopy of Hg(Il)-rubredoxin: model for a mononuclear tetrahedral [Hg (CysS)4]2- center. J Biol Inorg Chem 5:393–401

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Yang H, Wang T, Liu B, Zhao H, Chen M (2010) Metallothionein and superoxide dismutase responses to sublethal cadmium exposure in the clam Mactra veneriformis. Comp Biochem Physiol C Toxicol Pharmacol 151:325–333

    Article  PubMed  Google Scholar 

  • Fosso-Kankeu E, Mulaba-Bafubiandi AF (2014) Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: a review. Phys Chem Earth 67:242–252

    Article  Google Scholar 

  • Hachiya N (2006) The history and the present of Minamata disease. Jpn Med Assoc J 49:112–118

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins–metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich B, Mayer K, Sandermann GR, Ernst D (2001) Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure. Plant Cell Environ 24:1227–1234

    Article  CAS  Google Scholar 

  • Janssens TKS, Roelofs D, Van Straalen NM (2009) Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Sci 16:3–18

    Article  CAS  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Lin KH, Chien MF, Hsieh JL, Huang CC (2010) Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein. Appl Microbiol Biotechnol 87:561–569

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Lin J, Zhang C, Ren Y, Lin J (2011) Cd(II) and As(III) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins. J Hazard Mater 185:1605–1608

    Article  CAS  PubMed  Google Scholar 

  • Mathema VB, Thakuri BC, Sillanpää M (2011) Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arch Microbiol 193:837–844

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  Google Scholar 

  • Mohammadi Nezhad R, Shahpiri A, Mirlohi A (2013) Discrimination between two rice metallothionein isoforms belonging to type 1 and type type 4 in metal-binding ability. Biotechnol Appl Biochem 60:275–282

    Article  Google Scholar 

  • Morgan AJ, Kille P, Stürzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41:1085–1096

    Article  CAS  PubMed  Google Scholar 

  • Pätsikkä E, Kairavuo M, Šeršen F, Aro EM, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129:1359–1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbent: enhanced uptake of cadmium and mercury by E. coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–4072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrus AK, Rutner C, Liu S, Wang Y, Wiatrowski HA (2015) Mercury reduction and methyl mercury degradation by the soil bacterium Xanthobacter autotrophicus Py2. Appl Environ Microbiol 81:7833–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirzadeh S, Shahpiri A (2016) Functional characterization of a type 2 metallothionenin isoform (OsMTI-2b) from rice. Int J Biol Macromol 88:491–496

    Article  CAS  PubMed  Google Scholar 

  • Rossbach S, Kukuk ML, Wilson TL, Feng SF, Pearson MM, Fisher MA (2000) Cadmium-regulated gene fusions in Pseudomonas fluorescens. Environ Microbiol 2:373–382

    Article  CAS  PubMed  Google Scholar 

  • Ruiz ON, Alvarez D, Gonzales-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926

    Article  PubMed  Google Scholar 

  • Sauge-Merle S, Lecomte-Pradines C, Carrier P, Cuiné S, Dubow M (2012) Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. Chemosphere 88:918–924

    Article  CAS  PubMed  Google Scholar 

  • Shahpiri A, Soleimanifard I, Asadollahi M (2015) Functional characterization of a type 3 metallothionein isoform (OsMTI-3a) from rice. Int J Biol Macromol 73:154–159

    Article  CAS  PubMed  Google Scholar 

  • Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90

    Article  CAS  Google Scholar 

  • Tomas M, Tinti A, Bofill R, Capdevila M, Atrian S, Torreggiani A (2016) Comparative Raman study of four plant metallothionein isoforms: insights into their Zn(II) clusters and protein conformations. J Inorg Biochem 156:55–63

    Article  CAS  PubMed  Google Scholar 

  • Toriumi S, Saito T, Hosokawa T, Takahashi Y, Numata T, Kurasaki M (2005) Metal binding ability of metallothionein-3 expressed in Escherichia coli. Basic Clin Pharmacol Toxicol 96:295–301

    Article  CAS  PubMed  Google Scholar 

  • Trevors JT (1986) Mercury methylation by bacteria. J Basic Microbiol 26:499–504

    Article  CAS  PubMed  Google Scholar 

  • Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183.

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Freisinger E (2009) The metallothionein 2 from Cicer arietinum forms a single metal-thiolate cluster. Metallomics 1:489–500

    Article  CAS  PubMed  Google Scholar 

  • Wuhua L, Zelazowski AJ, Stillman MJ (1993) Mercury binding to metallothioneins: formation of the Hg18-Mt species. Inorg Chem 32:919–926

    Article  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptation to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azar Shahpiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahpiri, A., Mohammadzadeh, A. Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68, 145–152 (2018). https://doi.org/10.1007/s13213-018-1326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1326-2

Keywords

Navigation