Skip to main content

Advertisement

Log in

Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutant that are given top priority to maintain water and soil quality to the most amenable standard. Biodegradation of PAHs by bacteria is the convenient option for decontamination on site or off site. The aim of the present study was to isolate and identify naturally occurring bacteria having mixed PAHs biodegradation ability. The newly isolated Pseudomonas putida strain KD6 was found to efficiently degrade 97.729% of 1500 mg L−1 mixed PAHs within 12 days in carbon-deficient minimal medium (CSM). The half-life (t 1/2) and degradation rate constant (k) were estimated to be 3.2 and 0.2165 days, respectively. The first-order kinetic parameters in soil by strain KD6 had shown efficient biodegradation potency with the higher concentration of total PAHs (1500 mg kg−1 soil), t 1/2 = 10.44 days−1. However, the biodegradation by un-inoculated control soil was found slower (t 1/2 = 140 days−1) than the soil inoculated with P. putida strain KD6. The enzyme kinetic constants are also in agreement with chemical data obtained from the HPLC analysis. In addition, the sequence analysis and molecular docking studies showed that the strain KD6 encodes a mutant version of naphthalene 1,2-dioxygenase which have better Benzpyrene binding energy (−9.90 kcal mol−1) than wild type (−8.18 kcal mol−1) enzyme (chain A, 1NDO), respectively, with 0.00 and 0.08 RMSD values. The mutated naphthalene 1,2-dioxygenase nahAc has six altered amino acid residues near to the ligand binding site. The strain KD6 could be a good bioresource for in situ or ex situ biodegradation of polycyclic aromatic hydrocarbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MSM (2015) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123. doi:10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Akbar S, Sultan S, Kertesz M (2014) Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Curr Microbiol 70:75–84. doi:10.1007/s00284-014-0684-7

    Article  Google Scholar 

  • Albuquerque M, Coutinho M, Borrego C (2016) Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. Sci Total Environ 543:439–448. doi:10.1016/j.scitotenv.2015.11.064

    Article  CAS  Google Scholar 

  • Arvanitis N, Katsifas EA, Chalkou KI et al (2008) A refinery sludge deposition site: presence of nahH and alkJ genes and crude oil biodegradation ability of bacterial isolates. Biotechnol Lett 30:2105–2110. doi:10.1007/s10529-008-9816-0

    Article  CAS  Google Scholar 

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114

    Article  CAS  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. doi:10.1093/nar/gku340

    Google Scholar 

  • Bonilla M, Olivaro C, Corona M et al (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98:456–463. doi:10.1111/j.1365-2672.2004.02480.x

    Article  CAS  Google Scholar 

  • Carugo O, Pongor S (2008) A normalized root-mean-spuare distance for comparing protein three-dimensional structures. Protein Sci 10:1470–1473. doi:10.1110/ps.690101

    Article  Google Scholar 

  • Chemical Computing Group Inc (2011) Molecular operating environment (MOE), 10th edn. Chemical Computing Group Inc, Montreal

    Google Scholar 

  • Chen JE, Huang CC, Ferrin TE (2015) RRDistMaps: a UCSF chimera tool for viewing and comparing protein distance maps. Bioinformatics 31:1484–1486. doi:10.1093/bioinformatics/btu841

    Article  CAS  Google Scholar 

  • Chou C-C, Wang AH-J (2015) Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry. Mol BioSyst 11:2144–2151. doi:10.1039/C5MB00206K

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genom Res 14:1188–1190. doi:10.1101/gr.849004

    Article  CAS  Google Scholar 

  • Diggs DL, Huderson AC, Harris KL et al (2011) Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Heal Part C 29:324–357. doi:10.1080/10590501.2011.629974

    Article  CAS  Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830. doi:10.1093/femsre/fuw031

    Article  CAS  Google Scholar 

  • Eisenthal R, Danson MJ, Hough DW (2007) Catalytic efficiency and kcat/KM: a useful comparator? Trends Biotechnol 25:247–249. doi:10.1016/j.tibtech.2007.03.010

    Article  CAS  Google Scholar 

  • Gallego JLR, García-Martínez MJ, Llamas JF et al (2007) Biodegradation of oil tank bottom sludge using microbial consortia. Biodegradation 18:269–281. doi:10.1007/s10532-006-9061-y

    Article  Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T et al (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6:1–7. doi:10.1007/s13205-016-0560-1

    Article  Google Scholar 

  • Guo W, He M, Yang Z et al (2011) Aliphatic and polycyclic aromatic hydrocarbons in the Xihe River, an urban river in China’s Shenyang City: distribution and risk assessment. J Hazard Mater 186:1193–1199. doi:10.1016/j.jhazmat.2010.11.122

    Article  CAS  Google Scholar 

  • Ifegwu C, Osunjaye K, Fashogbon F, Oke K, Adeniyi A, Anyakora C, Ifegwu C, Osunjaye K et al (2012) Urinary 1-hydroxypyrene as a biomarker to carcinogenic polycyclic aromatic hydrocarbon exposure. Biomark Cancer 4:7. doi:10.4137/BIC.S10065

    Article  CAS  Google Scholar 

  • Iyer R, Stepanov VG, Iken B (2013) Isolation and molecular characterization of a novel Pseudomonas putida strain capable of degrading organophosphate and aromatic compounds. Adv Biol Chem 3:564–578. doi:10.4236/abc.2013.36065

    Article  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM et al (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643. doi:10.1016/j.biortech.2007.04.047

    Article  CAS  Google Scholar 

  • Keshavarzifard M, Zakaria MP, Shau Hwai T et al (2014) Baseline distributions and sources of Polycyclic Aromatic Hydrocarbons (PAHs) in the surface sediments from the Prai and Malacca Rivers, Peninsular Malaysia. Mar Pollut Bull 88:366–372. doi:10.1016/j.marpolbul.2014.08.014

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol. doi:10.1093/molbev/msw054

    Google Scholar 

  • Lee K (1999) Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide. J Bacteriol 181:2719–2725

    CAS  Google Scholar 

  • Lee B-K, Vu VT (2010) Sources, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) in particulate matter. In: Air pollution. pp 22–25

  • Lin QS, Chen SH, Hu MY et al (2011) Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int J Environ Sci Technol 8:45–56. doi:10.1007/BF03326194

    Article  CAS  Google Scholar 

  • Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. WH Freeman, New York

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. doi:10.1016/0304-3894(92)87011-4

    CAS  Google Scholar 

  • Mendoza VL, Vachet RW (2009) Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom Rev 28:785–815

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  Google Scholar 

  • Peng N, Li Y, Liu Z et al (2016) Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion. Sci Total Environ 565:1201–1207. doi:10.1016/j.scitotenv.2016.05.188

    Article  CAS  Google Scholar 

  • Pérez-Pantoja D, Donoso R, Agulló L et al (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14:1091–1117

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  • Qi J, Wang B, Li J et al (2015) Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1. Environ Sci Pollut Res 22:6743–6755. doi:10.1007/s11356-014-3833-4

    Article  CAS  Google Scholar 

  • Rengarajan T, Rajendran P, Nandakumar N et al (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5:182–189. doi:10.1016/S2221-1691(15)30003-4

    Article  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248. doi:10.1016/S0167-7799(02)01943-1

    Article  CAS  Google Scholar 

  • Sanner MF (1999) News and views. J Mol Graph Model 17:55–84. doi:10.1016/S1093-3263(99)99999-0

    Article  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. doi:10.1016/j.ecoenv.2005.03.013

    Article  CAS  Google Scholar 

  • Warwicker J, Charonis S, Curtis RA (2014) Lysine and arginine content of proteins: computational analysis suggests a new tool for solubility design. Mol Pharm 11:294–303. doi:10.1021/mp4004749

    Article  CAS  Google Scholar 

  • World Health Organization (2010) WHO guidelines for indoor air quality: selected pollutants. Bonn, Ger puncto druck + Medien GmbH 484. doi: 10.1186/2041-1480-2-S2-I1

  • Yang Q, Chen H, Li B (2015) Polycyclic aromatic hydrocarbons (PAHs) in indoor dusts of guizhou, southwest of china: status, sources and potential human health risk. PLoS ONE. doi:10.1371/journal.pone.0118141

    Google Scholar 

  • Zhu X, Ni X, Gatheruwaigi M et al (2016) Biodegradation of mixed PAHS by PAH-degrading endophytic bacteria. Int J Environ Res Public Health 13:805. doi:10.3390/ijerph13080805

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by University Grands Commission (VU/Innovative/Sc/17/2015), Govt. of India. We are thankful to Mr. Dipankar Mandal, USIC, Vidyasagar University for the HPLC analysis. We are grateful to Mr. Smriti Ranjan Majhi, Bose Institute, for GCMS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandradipa Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, K., Shityakov, S., Das, P.P. et al. Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste. 3 Biotech 7, 365 (2017). https://doi.org/10.1007/s13205-017-0940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0940-1

Keywords

Navigation