Skip to main content
Log in

Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur–aromatic compounds (31–55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OTBS:

oil tank bottom sludge

NSO:

nitrogen, sulphur, oxygen compounds in oil

CDS:

cyclodextrin–diesel agar synthetic medium

References

  • Alonso A, Rojo F, Martínez JL (1999) Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1:421–430

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäfeer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ Int 26:413–416

    Article  CAS  Google Scholar 

  • Bardi L, Mattei A, Steffan S, Marzona M (2000) Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microbiol Technol 27:709–713

    Article  CAS  Google Scholar 

  • Bouchez M, Blanchet D, Bardin V, Haeseler F, Vandecasteele JP (2000) Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation 10:429–435

    Article  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA (1992) Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 58:3413–3419

    CAS  Google Scholar 

  • Carvalho MF, Alves CC, Ferreira MI, DeMarco P, Castro PM (2002) Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68:102–105

    Article  CAS  Google Scholar 

  • Durham DR, McNamee CG, Stewart DB (1984) Dissimilation of aromatic compounds in Rhodotorula graminis. J Bacteriol 160:771–777

    CAS  Google Scholar 

  • Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337

    Article  CAS  Google Scholar 

  • Ferrari MD, Neirotti E, Albornoz C, Mostazo MR, Cozzo M (1996) Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries. Biotechnol Letts 18:1241–1246

    Article  CAS  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  CAS  Google Scholar 

  • Foght J, Semple K, Westlake DWS, Blenkinsopp S, Sergy G, Wang Z, Fingas M (1998) Development of a standard bacterial consortium for laboratory efficacy testing of commercial freshwater oil spill bioremediation agents. J Ind Microbiol Biotechnol 21:322–330

    Article  CAS  Google Scholar 

  • Furukawa K (2003) ‘Super bugs’ for bioremediation. Trends Biotechnol 21:187–189

    Article  CAS  Google Scholar 

  • Gallego JR, Loredo J, Llamas JF, Sánchez J (2001a) Sources of hydrocarbon-degrading microorganisms: isolation, characterization and applications. In: Proceedings of the first European bioremediation conference, Chania—Greece, pp 324–327

  • Gallego JR, Loredo J, Llamas JF, Vázquez F, Sánchez J (2001b) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335

    Article  CAS  Google Scholar 

  • García-López MD, Uruburu F (2001) La conservación de cepas microbianas. Actualidad de la SEM (Sociedad Española de Microbiología) 30:12–14

    Google Scholar 

  • Ghazali FM, Abdul-Rahman R, Bakar-Salleh A, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodet, Biodeg 54:61–67

    Article  CAS  Google Scholar 

  • Gordon L, Dobson AD (2001) Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation 12:393–400

    Article  CAS  Google Scholar 

  • Hurst CJ (2002) Neighborhoods and community involvement: no microbe is an island. In: Hurst CJ (Ed) Manual of Environmental Microbiology, 2nd edn. ASM Press, Washington, pp 6–18

    Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of Benzo(a)pyrene by a microbial consortium growing on Diesel Fuel. Appl Environ Microbiol 66:4205–4211

    Article  CAS  Google Scholar 

  • Kim SJ, Choi DH, Sim DS, Oh YS (2004) Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere 59:845–852

    Article  CAS  Google Scholar 

  • Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81:355–362

    CAS  Google Scholar 

  • MacGillivray AR, Shiaris MP (1993) Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated form coastal sediments. Appl Environ Microbiol 59:1613–1618

    CAS  Google Scholar 

  • Medina-Bellver JI, Marín P, Delgado A, Rodríguez-Sánchez A, Reyes E, Ramos JL, Marques S (2005) Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ Microbiol 7:773–779

    Article  CAS  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ Bioremediation of Oily-Sludge-Contaminated soil. Appl Environ Microbiol 67:1675–1681

    Article  CAS  Google Scholar 

  • O’Mahony MM, Dobson AD, Barnes JD, Singleton I (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63:307–314

    Article  CAS  Google Scholar 

  • Peters KE, Moldowan JM (2004) The Biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediments, 2nd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Pollard SJ, Whittaker M, Risden GC (1999) The fate of heavy oil wastes in soil microcosms I: a performance assessment of biotransformation indices. Sci Total Environ 226:1–22

    Article  CAS  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soils. CRC Press, Lewis Publishers, New York

    Google Scholar 

  • Romero MC, Salvioli ML, Cazau MC, Arambarri AM (2002) Pyrene degradation by yeasts and filamentous fungi. Environ Pollut 117:159–163

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261

    Article  CAS  Google Scholar 

  • Schwartz A, Bar R (1995) Cyclodextrin-enhanced degradation of toluene and p-toluenic acid by Pseudomonas putida. Appl Environ Microbiol 61:2727–2731

    CAS  Google Scholar 

  • Singer AC, Van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol 23:74–77

    Article  CAS  Google Scholar 

  • Southam G, Whitney M, Knickerbocker C (2001) Structural characterization of the hydrocarbon degrading bacteria-oil interface: implications for bioremediation. Int Biodet, Biodeg 47:197–201

    Article  CAS  Google Scholar 

  • Speight JG (2001) Handbook of petroleum analysis. John Wiley, Sons, New York

    Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204

    Article  CAS  Google Scholar 

  • Thouand G, Bauda P, Oudot J, Kirsch G, Sutton C, Vidalie JF (1999) Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 45:106–115

    Article  CAS  Google Scholar 

  • Van Hamme JD, Odumeru JA, Ward OP (2000) Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can J Microbiol 46:441–450

    Article  Google Scholar 

  • Van Hamme JD, OP Ward (2001) Physical and metabolic interactions of Pseudomonas sp. Strain JA5-B45 and Rhodococcus sp. Strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl Environ Microbiol 67:4874–4879

    Article  Google Scholar 

  • Viñas M, Grifoll M, Sabaté J, Solanas AM (2002) Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J Ind Microbiol Biotechnol 28:252–260

    Article  Google Scholar 

  • Vogel TM, Walter MV (2002) Bioaugmentation. In: Hurst CJ (Ed) Manual of Environmental Microbiology. 2nd edn. ASM Press, Washington, pp 952–959

    Google Scholar 

  • Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. ASM Press, Washington

    Google Scholar 

  • Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H (2005) The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem Eng J 24:243–247

    Article  CAS  Google Scholar 

  • Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received a grant from the Fundación Repsol-YPF (Spain). We wish to thank Dr. Carlos García-Fandiño at the Puertollano refinery (Repsol-YPF) for his technical support and Ms. Priscilla Chase for linguistic correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis R. Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, J.L.R., García-Martínez, M.J., Llamas, J.F. et al. Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia. Biodegradation 18, 269–281 (2007). https://doi.org/10.1007/s10532-006-9061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-006-9061-y

Keywords

Navigation