Skip to main content

Advertisement

Log in

Synthesis of silver nanoparticles from wild and tissue cultured Ceropegia juncea plants and its antibacterial, anti-angiogenesis and cytotoxic activities

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In the current study, silver nanoparticles (AgNPs) have been synthesized from aqueous extracts of wild plants (WCJ) and tissue cultured plants (TCCJ) of Ceropegia juncea, which is an endangered medicinal plant. AgNPs were synthesized using this method and validated by UV–visible spectrophotometry, FTIR analysis, XRD measurements, EDX and SEM analysis. Visual observation of the UV/visible spectrum and UV–visible spectra of WCJ and TCCJ after they were treated with Ag precursors revealed the development of yellowish-brown and dark brown colors, respectively. FTIR analysis identified flavonoids and terpenoids as the compounds responsible for capping and stabilizing AgNPs. It is evident from the XRD results that the synthesized AgNPs are crystallized. The optical absorption peaks observed in the EDX samples of WCJ and TCCJ AgNPs were both approximately 3 keV indicating the presence of elemental silver. Furthermore, SEM analysis verified that WCJ and TCCJ AgNPs had sizes of approximately 3–32 μm and 8.28–13.82 μm, respectively. According to the results of anti-bacterial activity, both samples inhibited bacterial growth in a dose-dependent manner. WCJ and TCCJ AgNPs altered the vascular system, suppressing the creation of new blood vessels and causing distortions of existing vessels as detected in the angiogenesis study. AgNPs exhibited noteworthy cytotoxicity against HT-29 cells at 250 g/mL concentration, with 74.4 and 82.95% cell death against WCJ and TCCJ AgNPs with IC50 value of 92. 99 and 97.42 µg/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

UV:

Ultra violet

FTIR:

Fourier transmission infrared

XRD:

X-ray diffraction

EDX:

Energy dispersive X-ray analysis

SEM:

Scanning electron microscopy

AgNO3 :

Silver nitrate

SNP:

Silver nanoparticle

µg:

Milligram

mL:

Microliter

IC:

Inhibition concentration

References

  • Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363

    Article  Google Scholar 

  • Acharya D, Shrivastava A (2008) Indigenous herbal medicines. Aavishkar Publishers, Distributors, Jaipur

    Google Scholar 

  • Adibatti N, Thirugnanasambantham P, Kulothungan C, Viswanathan S, Kameswaran L, Balakrishna K, Sukumar E (1991) A pyridine alkaloid from Ceropegia juncea. Phytochemistry 30:2449–2450

    Article  CAS  Google Scholar 

  • Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6:399–408

    Article  CAS  Google Scholar 

  • Asolkar L, Chopra R (1992) Second supplement to glossary of Indian medicinal plants with active principles. Publications & Information Directorate, New York

    Google Scholar 

  • Baláž M, Balážová Ľ, Daneu N, Dutková E, Balážová M, Bujňáková Z, Shpotyuk Y (2017) Plant-mediated synthesis of silver nanoparticles and their stabilization by wet stirred media milling. Nanoscale Res Lett 12:1–9

    Article  Google Scholar 

  • Baláž M, Bedlovičová Z, Kováčová M, Salayová A, Balážová Ľ (2020) Green and bio-mechanochemical approach to silver nanoparticles synthesis, characterization and antibacterial potential. Nanostruct Antimicrob Antibiofilm Appl 145–183. https://doi.org/10.1007/978-3-030-40337-9_7

  • Brown T, Ta B (1976) The effects of silver nitrate on the growth and ultrastructure of the yeast cryptocaccus albidus. https://agris.fao.org/agris-search/search.do?recordID=US201302979217

  • Castro-Aceituno V, Ahn S, Simu SY, Singh P, Mathiyalagan R, Lee HA, Yang DC (2016) Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother 84:158–165

    Article  CAS  Google Scholar 

  • Chinnadurai V, Kalimuthu K, Prabakaran R, Juliet YS (2016) Antiangiogenesis and anticancer activity of leaf and leaf callus extracts from Baccharoides anthelmintica (L.) Moench (Asteraceae). J Pharm Res Int 1–9. https://doi.org/10.9734/BJPR/2016/28758

  • Choi Y, Ho NH, Tung CH (2007) Sensing phosphatase activity by using gold nanoparticles. Angew Chem 119:721–723

    Article  Google Scholar 

  • Das J, Das MP, Velusamy P (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta Part A Mol Biomol Spectrosc 104:265–270

    Article  CAS  Google Scholar 

  • David L, Moldovan B, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Florea A, Crisan M, Chiorean I, Clichici S (2014) Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf B 122:767–777

    Article  CAS  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  Google Scholar 

  • Dixit S, Ali H (2010) Anticancer activity of medicinal plant extract-a review. J Chem Chem Sci 1:79–85

    Google Scholar 

  • Fissan H, Ristig S, Kaminski H, Asbach C, Epple M (2014) Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods 6:7324–7334

    Article  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  • Govindappa M, Hemashekhar B, Arthikala M-K, Rai VR, Ramachandra Y (2018) Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys 9:400–408

    Article  Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2(6):789–803. https://doi.org/10.2217/17435889.2.6.789

    Article  CAS  Google Scholar 

  • He B, Tan JJ, Liew KY, Liu H (2004) Synthesis of size controlled Ag nanoparticles. J Mol Catal Chem 221:121–126

    Article  CAS  Google Scholar 

  • Heinrich M, Bremner P (2006) Ethnobotany and ethnopharmacy-their role for anti-cancer drug development. Curr Drug Targets 7:239–245

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  • Jagtap A, Singh N (1999) Asclepiadaceae and periplocaceae. Fascicles Flora India 24:1–332

    Google Scholar 

  • Jain S, DeFilipps R (1991) Medicinal plants of India, vol 1. Reference Publ. Inc., Algonac, p 298

    Google Scholar 

  • Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P (2014) Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crops Prod 52:714–720

    Article  CAS  Google Scholar 

  • Kalaiyarasu T, Karthi N, Sharmila GV, Manju V (2016) In vitro assessment of antioxidant and antibacterial activity of green synthesized silver nanoparticles from Digitaria radicosa leaves. Asian J Pharm Clin Res 9, 297–302

    CAS  Google Scholar 

  • Kalimuthu K, Prabakaran R (2013) Micropropagation of Ceropegia pusilla-medicinally important Plant. J Trop Med Plants 14, 37–42

    Google Scholar 

  • Kalimuthu K, Prabakaran R, Paulsamy S, Jeyaraman S (2014) Microtuberization of Ceropegia pusilla Wight and Arn. An endangered medicinal plant. Eur J Med Plants 64–74. https://doi.org/10.9734/EJMP/2014/5266

  • Kannan N, Selvaraj S, Murty RV (2010) Microbial production of silver nanoparticles. Dig J Nanomater Biostruct 5:135–140

    Google Scholar 

  • Karuppusamy S, Pullaiah T (2009) Pollination system and ex situ fruit set in Ceropegia juncea Wight (Apocynaceae)—an endemic species of India. Acad J Plant Sci 2:242–245

    Google Scholar 

  • Karuppusamy S (2007) Medicinal plants used by Paliyan tribes of Sirumalai hills of southern India

  • Kondamudi R, Vijayalakshmi V, Murthy KSR (2010) Induction of morphogenetic callus and multiple shoot regeneration in Ceropegia pusilla Wight and Arn. Biotechnology 9:141–148

    Article  CAS  Google Scholar 

  • Krishnareddy P, Pullaiah T (2012) In vitro conservation of Ceropegia elegans, an endemic plant of South India. Afr J Biotechnol 11:12443–12449

    Article  CAS  Google Scholar 

  • Lalitha A, Subbaiya R, Ponmurugan P (2013) Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. Int J Curr Microbiol Appl Sci 2:228–235

    Google Scholar 

  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1–10

    Article  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  Google Scholar 

  • Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726

    Article  Google Scholar 

  • Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK (2017) Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front Mol Biosci 4:14

    Article  Google Scholar 

  • Muthukrishnan S, Bhakya S, Kumar TS, Rao M (2015) Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii—an endemic species. Ind Crops Prod 63:119–124

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Namratha N, Monica P (2013) Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Asian J Pharm Technol 3:170–174

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nikam A, Prasad B, Kulkarni A (2018) Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20:5091–5107

    Article  CAS  Google Scholar 

  • Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys E 43:1318–1322

    Article  CAS  Google Scholar 

  • Pullaiah T (2006) Encyclopaedia of world medicinal plants. Daya books, Pune

    Google Scholar 

  • Rajakumar G, Gomathi T, Thiruvengadam M, Rajeswari VD, Kalpana V, Chung I-M (2017) Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microb Pathog 103:123–128

    Article  CAS  Google Scholar 

  • Rajathi K, Sridhar S (2012) Room temperature synthesis of silver nanoparticles by using arial part of Tephrosia purpurea extract in biological method and evaluation of its antibacterial activity. Int J Green Chem Bioprocess 2:39–43

    Google Scholar 

  • Ramesh B, Rajeshwari R (2015) Anticancer activity of green synthesized silver nanoparticels of Abutilon indicumlinn. leaf extract. Asian J Phytomed Clin Res 3:124–131

    CAS  Google Scholar 

  • Ranjitha V, Kalimuthu K, Chinnadurai V, Juliet YS, Saraswathy M (2018) Green synthesis and antioxidant analysis of in vivo leaf and in vitro callus of Tephrosia villosa. Pharmacogn Mag 14:147

    Article  CAS  Google Scholar 

  • Rath M, Panda SS, Dhal NK (2014) Synthesis of silver nano particles from plant extract and its application in cancer treatment: a review. Int J Plant Anim Environ Sci 4:137–145

    CAS  Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, New York. https://doi.org/10.1557/mrs2006.17

    Book  Google Scholar 

  • Richards R, Odelola H, Anderson B (1984) Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 39:151–157

    CAS  Google Scholar 

  • Salayová A, Bedlovičová Z, Daneu N, Baláž M, Lukáčová Bujňáková Z, Balážová Ľ, Tkáčiková Ľ (2021) Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: morphology and antibacterial efficacy. Nanomaterials 11:1005

    Article  Google Scholar 

  • Sathishkumar M, Sneha K, Yun Y-S (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Biores Technol 101:7958–7965

    Article  CAS  Google Scholar 

  • Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:138–143

    Article  CAS  Google Scholar 

  • Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci 97:996–1001

    Article  CAS  Google Scholar 

  • Seyfi P, Mostafaie A, Mansouri K, Arshadi D, Mohammadi-Motlagh H-R, Kiani A (2010) In vitro and in vivo anti-angiogenesis effect of shallot (Allium ascalonicum): a heat-stable and flavonoid-rich fraction of shallot extract potently inhibits angiogenesis. Toxicol In Vitro 24:1655–1661

    Article  CAS  Google Scholar 

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988

    Article  CAS  Google Scholar 

  • Sukumar E, Gopal RH, Rao RB, Viswanathan S, Thirugnanasambantham P (1995) Pharmacological actions of cerpegin, a novel pyridine alkaloid from Ceropegia juncea. Fitoterapia (milano) 66:403–406

    CAS  Google Scholar 

  • Suman T, Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B 106:74–78

    Article  CAS  Google Scholar 

  • Taylor R, Manandhar N, Towers G (1995) Screening of selected medicinal plants of Nepal for antimicrobial activities. J Ethnopharmacol 46:153–159

    Article  CAS  Google Scholar 

  • Upadhyay LSB, Verma N (2015) Recent developments and applications in plant-extract mediated synthesis of silver nanoparticles. Anal Lett 48:2676–2692

    Article  CAS  Google Scholar 

  • Usha C, Saishree M, Gladys Angelin Rachel D (2012) Green synthesis of silver nanoparticles using Achyranthes bidentata leaf extract and its larvicidal activity. Int J Sci Res 3:662–665

    Google Scholar 

  • Vajjiram C, Kalimuthu K, Saravanan M (2018) Isolation and identification of phytochemical constituents from various polar solvent crude leaf extracts of vulnerable aromatic tree-chloroxylon swietenia DC. https://doi.org/10.20959/wjpr201810-12363

  • Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Vijayakumar M, Priya K, Nancy F, Noorlidah A, Ahmed A (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod 41:235–240

    Article  CAS  Google Scholar 

  • Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA (2008) Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 62:3103–3105

    Article  CAS  Google Scholar 

  • Yeruva L, Pierre KJ, Elegbede A, Wang RC, Carper SW (2007) Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett 257:216–226

    Article  CAS  Google Scholar 

  • Zhang W, Qiao X, Chen J, Wang H (2006) Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J Colloid Interface Sci 302:370–373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University Researchers Supporting Project number (TURSP-2020/127), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

PS: Conceptualization, Methodology, Writing- Original draft preparation. KMJN: Conceptualization, Methodology, Writing- Original draft preparation. AV: Writing-Reviewing and Editing. MLK: Writing-Reviewing and Editing. PS: Writing-Reviewing and Editing. BHE: Funding acquisition. KB: Writing-Reviewing and Editing. KK: Supervision, Project administration.

Corresponding author

Correspondence to K. Kalimuthu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, P., Nisha, K.M.J., Vanitha, A. et al. Synthesis of silver nanoparticles from wild and tissue cultured Ceropegia juncea plants and its antibacterial, anti-angiogenesis and cytotoxic activities. Appl Nanosci 13, 1619–1633 (2023). https://doi.org/10.1007/s13204-021-02092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02092-z

Keywords

Navigation