Skip to main content

Advertisement

Log in

MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Due to their role in controlling translation, microRNAs emerged as novel therapeutic targets to modulate post-stroke outcomes. We previously reported that miR-21 is the most abundantly induced microRNA in the brain of rodents subjected to preconditioning-induced cerebral ischemic tolerance. We currently show that intracerebral administration of miR-21 mimic decreased the infarct volume and promoted better motor function recovery in adult male and female C57BL/6 mice subjected to transient middle cerebral artery occlusion. The miR-21 mimic treatment is also efficacious in aged mice of both sexes subjected to focal ischemia. Mechanistically, miR-21 mimic treatment decreased the post-ischemic levels of several pro-apoptotic and pro-inflammatory RNAs, which might be responsible for the observed neuroprotection. We further observed post-ischemic neuroprotection in adult mice administered with miR-21 mimic intravenously. Overall, the results of this study implicate miR-21 as a promising candidate for therapeutic translation after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Authors will provide all data when requested following the procedures and rules governed by the University of Wisconsin and William S. Middleton VA Hospital Research Center of Madison, WI.

References

  1. Chandran R, Mehta SL, Vemuganti R. Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int. 2017;111:12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing alpha-synuclein. Sci Signal. 2018;11(560):eaat4285.

  3. Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, et al. Impact of microRNAs on ischemic stroke: from pre- to post-disease. Prog Neurobiol. 2018;163–164:59–78.

    Article  PubMed  CAS  Google Scholar 

  4. Ma F, Sun P, Zhang X, Hamblin MH, Yin KJ. Endothelium-targeted deletion of the miR-15a/16–1 cluster ameliorates blood-brain barrier dysfunction in ischemic stroke. Sci Signal. 2020;13(626):eaay5686.

  5. Sohrabji F, Selvamani A. Sex differences in miRNA as therapies for ischemic stroke. Neurochem Int. 2019;127:56–63.

    Article  CAS  PubMed  Google Scholar 

  6. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29(4):675–87.

    Article  CAS  PubMed  Google Scholar 

  7. Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One. 2012;7(2):e32662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siegel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci USA. 2011;108(28):11662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis. 2010;38(1):17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Z, Zhong L, Zhong S, Xian R, Yuan B. miR-203 protects microglia mediated brain injury by regulating inflammatory responses via feedback to MyD88 in ischemia. Mol Immunol. 2015;65(2):293–301.

    Article  CAS  PubMed  Google Scholar 

  11. Yu H, Wu M, Zhao P, Huang Y, Wang W, Yin W. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. J Cell Biochem. 2015;116(2):233–41.

    Article  CAS  PubMed  Google Scholar 

  12. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, et al. Preconditioning in neuroprotection: from hypoxia to ischemia. Prog Neurobiol. 2017;157:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lopez MS, Dempsey RJ, Vemuganti R. Resveratrol preconditioning induces cerebral ischemic tolerance but has minimal effect on cerebral microRNA profiles. J Cereb Blood Flow Metab. 2016;36(9):1644–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saugstad JA. Non-coding RNAs in stroke and neuroprotection. Front Neurol. 2015;6:50.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dharap A, Vemuganti R. Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem. 2010;113(6):1685–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Biggar KK, Storey KB. Identification and expression of microRNA in the brain of hibernating bats. Myotis lucifugus Gene. 2014;544(1):67–74.

    CAS  PubMed  Google Scholar 

  18. Gu GL, Xu XL, Sun XT, Zhang J, Guo CF, Wang CS, et al. Cardioprotective effect of microRNA-21 in murine myocardial infarction. Cardiovasc Ther. 2015;33(3):109–17.

    Article  CAS  PubMed  Google Scholar 

  19. Ji W, Jiao J, Cheng C, Shao J. MicroRNA-21 in the Pathogenesis of traumatic brain injury. Neurochem Res. 2018;43(10):1863–8.

    Article  CAS  PubMed  Google Scholar 

  20. Liu B, Wei H, Lan M, Jia N, Liu J, Zhang M. MicroRNA-21 mediates the protective effects of salidroside against hypoxia/reoxygenation-induced myocardial oxidative stress and inflammatory response. Exp Ther Med. 2020;19(3):1655–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, et al. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics. 2014;46(21):789–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chokkalla AK, Mehta SL, Kim T, Chelluboina B, Kim J, Vemuganti R. Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain. Stroke. 2019;50(10):2912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morris-Blanco KC, Kim T, Lopez MS, Bertogliat MJ, Chelluboina B, Vemuganti R. Induction of DNA hydroxymethylation protects the brain after stroke. Stroke. 2019;50(9):2513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int. 2019;127:22–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990;10(2):290–3.

    Article  CAS  PubMed  Google Scholar 

  26. Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020;186:101746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lusardi TA, Murphy SJ, Phillips JI, Chen Y, Davis CM, Young JM, et al. MicroRNA responses to focal cerebral ischemia in male and female mouse brain. Front Mol Neurosci. 2014;7:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv B, Cheng X, Sharp FR, Ander BP, Liu DZ. MicroRNA-122 mimic improves stroke outcomes and indirectly inhibits NOS2 after middle cerebral artery occlusion in rats. Front Neurosci. 2018;12:767.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Panta A, Pandey S, Duncan IN, Duhamel S, Sohrabji F. Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun. 2019;78:31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stary CM, Xu L, Li L, Sun X, Ouyang YB, Xiong X, et al. Inhibition of miR-181a protects female mice from transient focal cerebral ischemia by targeting astrocyte estrogen receptor-alpha. Mol Cell Neurosci. 2017;82:118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H, et al. Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res. 2020;126(8):1040–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verma R, Ritzel RM, Harris NM, Lee J, Kim T, Pandi G, et al. Inhibition of miR-141-3p ameliorates the negative effects of poststroke social isolation in aged mice. Stroke. 2018;49(7):1701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bautista-Sanchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velazquez IA, Gonzalez-Barrios R, Contreras-Espinosa L, et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 2020;20:409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG, et al. microRNA-21 regulates astrocytic response following spinal cord injury. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012;32(50):17935–47.

    Article  CAS  Google Scholar 

  35. Jia P, Pan T, Xu S, Fang Y, Song N, Guo M, et al. Depletion of miR-21 in dendritic cells aggravates renal ischemia-reperfusion injury. FASEB J. 2020;34(9):11729–11740.

  36. Lu M, Jiang X, Tong L, Zhang F, Ma L, Dong X, et al. MicroRNA-21-regulated activation of the Akt pathway participates in the protective effects of H2S against liver ischemia-reperfusion injury. Biol Pharm Bull. 2018;41(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  37. Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer. 2011;30(6):371–80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang F, Liu W, Yan X, Zhou H, Zhang H, Liu J, et al. Effects of mir-21 on cardiac microvascular endothelial cells after acute myocardial infarction in rats: role of phosphatase and tensin homolog (PTEN)/vascular endothelial growth factor (VEGF) signal pathway. Medical science monitor: international medical journal of experimental and clinical research. 2016;22:3562–75.

    Article  CAS  Google Scholar 

  39. Yang C, Hawkins KE, Dore S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019;316(2):C135–53.

    Article  CAS  PubMed  Google Scholar 

  40. Yi JH, Park SW, Kapadia R, Vemuganti R. Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int. 2007;50(7–8):1014–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, McGuire TL, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2010;30(5):1839–55.

    Article  CAS  Google Scholar 

  42. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31–40.

    Article  CAS  PubMed  Google Scholar 

  43. Redell JB, Zhao J, Dash PK. Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res. 2011;89(2):212–21.

    Article  CAS  PubMed  Google Scholar 

  44. Sandhir R, Gregory E, Berman NE. Differential response of miRNA-21 and its targets after traumatic brain injury in aging mice. Neurochem Int. 2014;78:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goellner EM, Putnam CD, Graham WJT, Rahal CM, Li BZ, Kolodner RD. Identification of Exo1-Msh2 interaction motifs in DNA mismatch repair and new Msh2-binding partners. Nat Struct Mol Biol. 2018;25(8):650–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Tao G, Hill MC, Zhang M, Morikawa Y, Martin JF. Pitx2 maintains mitochondrial function during regeneration to prevent myocardial fat deposition. Development. 2018;145(18):dev168609.

  47. Kamath SP, Chen AI. Myocyte enhancer factor 2c regulates dendritic complexity and connectivity of cerebellar purkinje cells. Mol Neurobiol. 2019;56(6):4102–19.

    Article  CAS  PubMed  Google Scholar 

  48. Mitchell AC, Javidfar B, Pothula V, Ibi D, Shen EY, Peter CJ, et al. MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Mol Psychiatry. 2018;23(1):123–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Award 1I01-BX005127-01 from the U.S. Department of Veterans Affairs Biomedical Research Laboratory Research and Development Service of the VA Office of Research Development and the Dept. of Neurological Surgery, UW-Madison. MSL received a SciMedGRS/Centennial Graduate Student Scholarship.

Funding

This work was partially supported by Award 1I01-BX005127-01 from the U.S. Department of Veterans Affairs Biomedical Research Laboratory Research and Development Service of the VA Office of Research Development and the Dept. of Neurological Surgery, UW-Madison. Dr. Vemuganti is the recipient of a Research Career Scientist award (# IK6BX005690) from the US Department of Veterans Affairs. Mary Lopez received a SciMedGRS/Centennial Graduate Student Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

MSL and KCM-B, NL, and CM conducted the experiments and analyzed the data. RV and RJD conceptualized the project. MSL and RV drafted the paper.

Corresponding author

Correspondence to Raghu Vemuganti.

Ethics declarations

Ethics Approval

All animal protocols were approved by the Research Animal Resources and Care Committee of the University of Wisconsin-Madison, and animals were cared for in accordance with the Guide for the Care and Use of Laboratory Animals (U.S. Department of Health and Human Services Publication 86–23, revised). Studies were conducted and reported in accordance to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.

Consent to Participate

This is an animal study, and hence, this section is not applicable.

Consent for Publication

Authors consent to the publication of this paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, M.S., Morris-Blanco, K.C., Ly, N. et al. MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Transl. Stroke Res. 13, 483–493 (2022). https://doi.org/10.1007/s12975-021-00952-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00952-y

Keywords

Navigation