Skip to main content

Advertisement

Log in

Association Between Splenic Contraction and the Systemic Inflammatory Response After Acute Ischemic Stroke Varies with Age and Race

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Animal models have demonstrated the deleterious contribution of splenic immunocytes on secondary brain injury after stroke. While previous work has demonstrated splenic contraction (SC) in patients with acute ischemic stroke (AIS) and intracranial hemorrhage (ICH), no clinical studies have examined the relationship between the systemic inflammatory response syndrome (SIRS) with SC in stroke patients. This is a retrospective analysis of a previous prospective observational study where daily spleen sizes were evaluated in 178 acute stroke patients. Spleen contraction was based on previously established normograms of healthy volunteers from the same study. SC from the first 24 h of stroke onset was evaluated against criteria for SIRS for the first 5 days of admission after AIS. Ninety-one patients had verified AIS without concurrent infection at admission. SIRS was not associated with SC at admission. African-American patients with early SIRS had higher odds of having SC. Older patients with persistent SIRS at 72 h had lower odds of SC. At 48 h, there was significantly higher lymphocytosis and lower neutrophils present in patients with SC. Patients with SIRS at 72 h were more likely to have worse discharge mRS. This study provides evidence for an association among SC and SIRS in African-American patients suggesting that spleen changes could be a biomarker for detecting SIRS in this population. Our data also indicate a counter association between SC and a lack of SIRS in patients older than 75. Further studies are needed to ascertain how age affects this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: SIRS in patients with or without SC.
Fig. 3: Components of white blood cell count in patients with and without SC.

Similar content being viewed by others

References

  1. Liu ZJ, Chen C, Li FW, Shen JM, Yang YY, Leak RK, et al. Splenic responses in ischemic stroke: new insights into stroke pathology. CNS Neurosci Ther. 2015;21(4):320–6. https://doi.org/10.1111/cns.12361.

    Article  PubMed  CAS  Google Scholar 

  2. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65. https://doi.org/10.1038/sj.jcbfm.9600217.

    Article  PubMed  CAS  Google Scholar 

  3. Rasouli J, Lekhraj R, Ozbalik M, Lalezari P, Casper D. Brain-spleen inflammatory coupling: a literature review. Einstein J Biol Med. 2011;27(2):74–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pennypacker KR. Targeting the peripheral inflammatory response to stroke: role of the spleen. Transl Stroke Res. 2014;5(6):635–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J NeuroImmune Pharmacol. 2012;7(4):1017–24. https://doi.org/10.1007/s11481-012-9406-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ostrowski RP, Schulte RW, Nie Y, Ling T, Lee T, Manaenko A, et al. Acute splenic irradiation reduces brain injury in the rat focal ischemic stroke model. Transl Stroke Res. 2012;3(4):473–81. https://doi.org/10.1007/s12975-012-0206-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhang BJ, Men XJ, Lu ZQ, Li HY, Qiu W, Hu XQ. Splenectomy protects experimental rats from cerebral damage after stroke due to anti-inflammatory effects. Chin Med J. 2013;126(12):2354–60.

    PubMed  CAS  Google Scholar 

  8. Ajmo CT Jr, Vernon DOL, Collier L, Hall AA, Garbuzova‐Davis S, Willing A, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86(10):2227–34. https://doi.org/10.1002/jnr.21661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fathali N, Ostrowski RP, Hasegawa Y, Lekic T, Tang J, Zhang JH. Splenic immune cells in experimental neonatal hypoxia-ischemia. Transl Stroke Res. 2013;4(2):208–19. https://doi.org/10.1007/s12975-012-0239-9.

    Article  PubMed  CAS  Google Scholar 

  10. Vahidy FS, Parsha KN, Rahbar MH, Lee MJ, Bui TT, Nguyen C, et al. Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. J Cereb Blood Flow Metab. 2016;36(6):1012–21. https://doi.org/10.1177/0271678X15607880.

    Article  PubMed  CAS  Google Scholar 

  11. Sahota P, Vahidy F, Nguyen C, Bui TT, Yang B, Parsha K, et al. Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int J Stroke. 2013;8(2):60–7. https://doi.org/10.1111/ijs.12022.

    Article  PubMed  Google Scholar 

  12. Chiu NL, Kaiser B, Nguyen YV, Welbourne S, Lall C, Cramer SC. The volume of the spleen and its correlates after acute stroke. J Stroke Cerebrovasc Dis. 2016;25(12):2958–61. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.012.

    Article  PubMed  PubMed Central  Google Scholar 

  13. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6): 864–74.

  14. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of ChestPhysicians/Society of Critical Care Medicine. 1992;101(6):1644–55.

  15. Boehme AK, Kapoor N, Albright KC, Lyerly MJ, Rawal PV, Bavarsad Shahripour R, et al. Systemic inflammatory response syndrome in tissue-type plasminogen activator-treated patients is associated with worse short-term functional outcome. Stroke. 2013;44(8):2321–3. https://doi.org/10.1161/STROKEAHA.113.001371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Phipps MS, Desai RA, Wira C, Bravata DM. Epidemiology and outcomes of fever burden among patients with acute ischemic stroke. Stroke. 2011;42(12):3357–62. https://doi.org/10.1161/STROKEAHA.111.621425.

    Article  PubMed  Google Scholar 

  17. Saini M, Saqqur M, Kamruzzaman A, Lees KR, Shuaib A, on behalf of the VISTA Investigators. Effect of hyperthermia on prognosis after acute ischemic stroke. Stroke. 2009;40(9):3051–9. https://doi.org/10.1161/STROKEAHA.109.556134.

    Article  PubMed  Google Scholar 

  18. Kumar AD, Boehme AK, Siegler JE, Gillette M, Albright KC, Martin-Schild S. Leukocytosis in patients with neurologic deterioration after acute ischemic stroke is associated with poor outcomes. J Stroke Cerebrovasc Dis. 2013;22(7):e111–7. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.08.008.

    Article  PubMed  Google Scholar 

  19. Nardi K, Milia P, Eusebi P, Paciaroni M, Caso V, Agnelli G. Admission leukocytosis in acute cerebral ischemia: influence on early outcome. J Stroke Cerebrovasc Dis. 2012;21(8):819–24. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.04.015.

    Article  PubMed  Google Scholar 

  20. Bowen KK, Naylor M, Vemuganti R. Prevention of inflammation is a mechanism of preconditioning-induced neuroprotection against focal cerebral ischemia. Neurochem Int. 2006;49(2):127–35. https://doi.org/10.1016/j.neuint.2006.02.011.

    Article  PubMed  CAS  Google Scholar 

  21. Seifert HA, Leonardo CC, Hall AA, Rowe DD, Collier LA, Benkovic SA, et al. The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis. 2012;27(2):131–41. https://doi.org/10.1007/s11011-012-9283-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke. 2008;39(10):2867–75. https://doi.org/10.1161/STROKEAHA.108.513978.

    Article  PubMed  CAS  Google Scholar 

  23. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7(1):97. https://doi.org/10.1186/1479-5876-7-97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vogelgesang A, Becker KJ, Dressel A. Immunological consequences of ischemic stroke. Acta Neurol Scand. 2014;129(1):1–12. https://doi.org/10.1111/ane.12165.

    Article  PubMed  CAS  Google Scholar 

  25. Audebert HJ, Rott MM, Eck T, Haberl RL. Systemic inflammatory response depends on initial stroke severity but is attenuated by successful thrombolysis. Stroke. 2004;35(9):2128–33. https://doi.org/10.1161/01.STR.0000137607.61697.77.

    Article  PubMed  Google Scholar 

  26. Boehme AK, Kapoor N, Albright KC, Lyerly MJ, Rawal PV, Bavarsad Shahripour R, et al. Predictors of systemic inflammatory response syndrome in ischemic stroke undergoing systemic thrombolysis with intravenous tissue plasminogen activator. J Stroke Cerebrovasc Dis. 2014;23(4):e271–6. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.11.022.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moore JX, Donnelly JP, Griffin R, Safford MM, Howard G, Baddley J, et al. Black-white racial disparities in sepsis: a prospective analysis of the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Crit Care. 2015;19(1):279. https://doi.org/10.1186/s13054-015-0992-8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Colbert JF, Traystman RJ, Poisson SN, Herson PS, Ginde AA. Sex-related differences in the risk of hospital-acquired sepsis and pneumonia post acute ischemic stroke. J Stroke Cerebrovasc Dis. 2016;25(10):2399–404. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boehme AK, Kumar AD, Dorsey AM, Siegler JE, Aswani MS, Lyerly MJ, et al. Infections present on admission compared with hospital-acquired infections in acute ischemic stroke patients. J Stroke Cerebrovasc Dis. 2013;22(8):e582–9. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.020.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bellinger DL, Lorton D, Felten SY, Felten DL. Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int J Immunopharmacol. 1992;14(3):329–44. https://doi.org/10.1016/0192-0561(92)90162-E.

    Article  PubMed  CAS  Google Scholar 

  31. Madden KS, Thyagarajan S, Felten DL. Alterations in sympathetic noradrenergic innervation in lymphoid organs with age. Ann N Y Acad Sci. 1998;840(1):262–8. https://doi.org/10.1111/j.1749-6632.1998.tb09566.x.

    Article  PubMed  CAS  Google Scholar 

  32. ThyagaRajan S, Madden KS, Teruya B, Stevens SY, Felten DL, Bellinger DL. Age-associated alterations in sympathetic noradrenergic innervation of primary and secondary lymphoid organs in female Fischer 344 rats. J Neuroimmunol. 2011;233(1–2):54–64. https://doi.org/10.1016/j.jneuroim.2010.11.012.

    Article  PubMed  CAS  Google Scholar 

  33. Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34(5):455–65. https://doi.org/10.1080/01926230600867743.

    Article  PubMed  Google Scholar 

  34. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun. 2007;21(6):736–45. https://doi.org/10.1016/j.bbi.2007.03.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity. 2013;39(5):806–18. https://doi.org/10.1016/j.immuni.2013.10.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mina-Osorio P, Rosas-Ballina M, Valdes-Ferrer SI, al-Abed Y, Tracey KJ, Diamond B. Neural signaling in the spleen controls B-cell responses to blood-borne antigen. Mol Med. 2012;18:618–27. https://doi.org/10.2119/molmed.2012.00027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ajmo CT Jr, Collier LA, Leonardo CC, Hall AA, Green SM, Womble TA, et al. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol. 2009;218(1):47–55. https://doi.org/10.1016/j.expneurol.2009.03.044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis. 2014;5(5):307–26. https://doi.org/10.14336/AD.2014.0500307.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harms H, Reimnitz P, Bohner G, Werich T, Klingebiel R, Meisel C, et al. Influence of stroke localization on autonomic activation, immunodepression, and post-stroke infection. Cerebrovasc Dis. 2011;32(6):552–60. https://doi.org/10.1159/000331922.

    Article  PubMed  CAS  Google Scholar 

  40. Walter U, Kolbaske S, Patejdl R, Steinhagen V, Abu-Mugheisib M, Grossmann A, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol. 2013;20(1):153–9. https://doi.org/10.1111/j.1468-1331.2012.03818.x.

    Article  PubMed  CAS  Google Scholar 

  41. Bakovic D, Eterovic D, Saratlija-Novakovic XXX, Palada I, Valic Z, Bilopavlovic N, et al. Effect of human splenic contraction on variation in circulating blood cell counts. Clin Exp Pharmacol Physiol. 2005;32(11):944–51. https://doi.org/10.1111/j.1440-1681.2005.04289.x.

    Article  PubMed  CAS  Google Scholar 

  42. Ruhnau J, et al. Thrombosis, neuroinflammation, and poststroke infection: the multifaceted role of neutrophils in stroke. J Immunol Res. 2017;2017:5140679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129(2):239–57. https://doi.org/10.1007/s00401-014-1381-0.

    Article  PubMed  CAS  Google Scholar 

  44. Ahmad M, Graham SH. Inflammation after stroke: mechanisms and therapeutic approaches. Transl Stroke Res. 2010;1(2):74–84. https://doi.org/10.1007/s12975-010-0023-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the staff of UT Ultrasonology lab.

Funding

This study was supported by NIH grant, 5 T32 NS007412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean I. Savitz.

Ethics declarations

Ethical Approval

For this type of study, formal consent is not required.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

ESM 1

(DOCX 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, A., Vahidy, F., Randhawa, J. et al. Association Between Splenic Contraction and the Systemic Inflammatory Response After Acute Ischemic Stroke Varies with Age and Race. Transl. Stroke Res. 9, 484–492 (2018). https://doi.org/10.1007/s12975-017-0596-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0596-5

Keywords

Navigation