Skip to main content
Log in

Significance of Mitochondrial Protein Post-translational Modifications in Pathophysiology of Brain Injury

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Mitochondria are complex organelles that undergo constant fusion and fission in order to adapt to the ever-changing cellular environment. The fusion/fission proteins, localized in the inner and outer mitochondrial membrane, play critical roles under pathological conditions such as acute brain injury and neurodegenerative diseases. Post-translational modifications of these proteins tightly regulate their function and activity, ultimately impacting mitochondrial dynamics and their efficiency to generate ATP. The individual post-translational modifications that are known to affect mitochondrial dynamics include SUMOylation, ubiquitination, phosphorylation, S-nitrosylation, acetylation, O-linked N-acetyl-glucosamine glycosylation, ADP-ribosylation, and proteolytic cleavage. Under stress or pathologic conditions, several of these modifications are activated leading to a complex regulatory mechanism that shifts the state of the mitochondrial network. The main goal is to accommodate and adapt the cellular bioenergetics metabolism to the energetic demand of the new extra- and/or intracellular environment. Understanding the complex relationship between these modifications on fusion and fission proteins in particular pathologic stress or diseases can provide new promising therapeutic targets and treatment approaches. Here, we discuss the specific post-translational modifications of mitochondrial fusion/fission proteins under pathologic conditions and their impact on mitochondrial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015;4:6–13. https://doi.org/10.1016/j.redox.2014.11.006.

    Article  PubMed  CAS  Google Scholar 

  2. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872–84. https://doi.org/10.1038/nrm3013.

    Article  PubMed  CAS  Google Scholar 

  3. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–5. https://doi.org/10.1126/science.1219855.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Anderson CA, Blackstone C. SUMO wrestling with Drp1 at mitochondria. EMBO J. 2013;32(11):1496–8. https://doi.org/10.1038/emboj.2013.103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen H, Chan DC. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet. 2009;18(R2):R169–76. https://doi.org/10.1093/hmg/ddp326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wilson TJ, Slupe AM, Strack S. Cell signaling and mitochondrial dynamics: implications for neuronal function and neurodegenerative disease. Neurobiol Dis. 2013;51:13–26. https://doi.org/10.1016/j.nbd.2012.01.009.

    Article  PubMed  CAS  Google Scholar 

  7. Gawlowski T, Suarez J, Scott B, Torres-Gonzalez M, Wang H, Schwappacher R, et al. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem. 2012;287(35):30024–34. https://doi.org/10.1074/jbc.M112.390682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014;34(5):807–19. https://doi.org/10.1128/MCB.01483-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. Brain Res Rev. 2010;64(1):195–212. https://doi.org/10.1016/j.brainresrev.2010.04.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yang W, Paschen W. SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics. 2015;15(5–6):1181–91. https://doi.org/10.1002/pmic.201400298.

    Article  PubMed  CAS  Google Scholar 

  11. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 1997;88(1):97–107.

    Article  PubMed  CAS  Google Scholar 

  12. Wei W, Yang P, Pang J, Zhang S, Wang Y, Wang MH, et al. A stress-dependent SUMO4 sumoylation of its substrate proteins. Biochem Biophys Res Commun. 2008;375(3):454–9. https://doi.org/10.1016/j.bbrc.2008.08.028.

    Article  PubMed  CAS  Google Scholar 

  13. Braschi E, Zunino R, McBride HM. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 2009;10(7):748–54. https://doi.org/10.1038/embor.2009.86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Martin S, Wilkinson KA, Nishimune A, Henley JM. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci. 2007;8(12):948–59. https://doi.org/10.1038/nrn2276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11(12):861–71. https://doi.org/10.1038/nrm3011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. van der Veen AG, Ploegh HL. Ubiquitin-like proteins. Annu Rev Biochem. 2012;81:323–57. https://doi.org/10.1146/annurev-biochem-093010-153308.

    Article  PubMed  CAS  Google Scholar 

  17. Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metab. 2007;27(5):950–62. https://doi.org/10.1038/sj.jcbfm.9600395.

    Article  PubMed  CAS  Google Scholar 

  18. Hochrainer K, Jackman K, Benakis C, Anrather J, Iadecola C. SUMO2/3 is associated with ubiquitinated protein aggregates in the mouse neocortex after middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2015;35(1):1–5. https://doi.org/10.1038/jcbfm.2014.180.

    Article  PubMed  CAS  Google Scholar 

  19. Cimarosti H, Lindberg C, Bomholt SF, Ronn LCB, Henley JM. Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology. 2008;54(2):280–9. https://doi.org/10.1016/j.neuropharm.2007.09.010.

    Article  PubMed  CAS  Google Scholar 

  20. Yang W, Sheng H, Warner DS, Paschen W. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J Cereb Blood Flow Metab. 2008;28(5):892–6. https://doi.org/10.1038/sj.jcbfm.9600601.

    Article  PubMed  CAS  Google Scholar 

  21. Yang W, Sheng H, Thompson JW, Zhao S, Wang L, Miao P, et al. Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier transgenic mice: putative protective proteins/pathways. Stroke. 2014;45(4):1115–22. https://doi.org/10.1161/STROKEAHA.113.004315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Harder Z, Zunino R, McBride H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol. 2004;14(4):340–5. https://doi.org/10.1016/j.cub.2004.02.004.

    Article  PubMed  CAS  Google Scholar 

  23. Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, McBride HM. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci. 2007;120(Pt 7):1178–88. https://doi.org/10.1242/jcs.03418.

    Article  PubMed  CAS  Google Scholar 

  24. Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol. 2007;177(3):439–50. https://doi.org/10.1083/jcb.200610042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zunino R, Braschi E, Xu L, McBride HM. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem. 2009;284(26):17783–95. https://doi.org/10.1074/jbc.M901902200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fu J, Yu HM, Chiu SY, Mirando AJ, Maruyama EO, Cheng JG, et al. Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet. 2014;10(10):e1004579. https://doi.org/10.1371/journal.pgen.1004579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Guo C, Hildick KL, Luo J, Dearden L, Wilkinson KA, Henley JM. SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J. 2013;32(11):1514–28. https://doi.org/10.1038/emboj.2013.65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 2010;428(2):133–45. https://doi.org/10.1042/BJ20100158.

    Article  PubMed  CAS  Google Scholar 

  29. Glauser L, Sonnay S, Stafa K, Moore DJ. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem. 2011;118(4):636–45. https://doi.org/10.1111/j.1471-4159.2011.07318.x.

    Article  PubMed  CAS  Google Scholar 

  30. Nunez-O'Mara A, Berra E. Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade. Biol Chem. 2013;394(4):459–69. https://doi.org/10.1515/hsz-2012-0319.

    Article  PubMed  CAS  Google Scholar 

  31. Formentini L, Macchiarulo A, Cipriani G, Camaioni E, Rapizzi E, Pellicciari R, et al. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J Biol Chem. 2009;284(26):17668–76. https://doi.org/10.1074/jbc.M109.002931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lapidus RG, Sokolove PM. The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. J Biol Chem. 1994;269(29):18931–6.

    PubMed  CAS  Google Scholar 

  33. Wojcik C, Di Napoli M. Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke. 2004;35(6):1506–18. https://doi.org/10.1161/01.STR.0000126891.93919.4e.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006;7(10):1019–22. https://doi.org/10.1038/sj.embor.7400790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Karbowski M, Neutzner A, Youle RJ. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol. 2007;178(1):71–84. https://doi.org/10.1083/jcb.200611064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Buhlman L, Damiano M, Bertolin G, Ferrando-Miguel R, Lombes A, Brice A, et al. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. Biochim Biophys Acta. 2014;1843(9):2012–26. https://doi.org/10.1016/j.bbamcr.2014.05.012.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Q, Wu J, Wu R, Ma J, Du G, Jiao R, et al. DJ-1 promotes the proteasomal degradation of Fis1: implications of DJ-1 in neuronal protection. Biochem J. 2012;447(2):261–9. https://doi.org/10.1042/BJ20120598.

    Article  PubMed  CAS  Google Scholar 

  38. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006;25(15):3618–26. https://doi.org/10.1038/sj.emboj.7601249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Park YY, Nguyen OT, Kang H, Cho H. MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis. 2014;5:e1172. https://doi.org/10.1038/cddis.2014.142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803. https://doi.org/10.1083/jcb.200809125.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lammermann K, et al. Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem. 2009;284(34):22938–51. https://doi.org/10.1074/jbc.M109.035774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang H, Song P, Du L, Tian W, Yue W, Liu M, et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem. 2011;286(13):11649–58. https://doi.org/10.1074/jbc.M110.144238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell. 2012;47(4):547–57. https://doi.org/10.1016/j.molcel.2012.05.041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chen Y, Dorn GW II. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471–5. https://doi.org/10.1126/science.1231031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liu CL, Martone ME, Hu BR. Protein ubiquitination in postsynaptic densities after transient cerebral ischemia. J Cereb Blood Flow Metab. 2004;24(11):1219–25. https://doi.org/10.1097/01.WCB.0000136706.77918.21.

    Article  PubMed  Google Scholar 

  46. Hochrainer K, Jackman K, Anrather J, Iadecola C. Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion. Stroke. 2012;43(8):2229–35. https://doi.org/10.1161/STROKEAHA.112.650416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A. 2011;108(25):10190–5. https://doi.org/10.1073/pnas.1107402108.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol. 2008;182(3):573–85. https://doi.org/10.1083/jcb.200802164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu W, Tian F, Kurata T, Morimoto N, Abe K. Dynamic changes of mitochondrial fusion and fission proteins after transient cerebral ischemia in mice. J Neurosci Res. 2012;90(6):1183–9. https://doi.org/10.1002/jnr.23016.

    Article  PubMed  CAS  Google Scholar 

  50. Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 2007;8(10):939–44. https://doi.org/10.1038/sj.embor.7401062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282(15):11521–9. https://doi.org/10.1074/jbc.M607279200.

    Article  PubMed  CAS  Google Scholar 

  52. Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell. 2011;22(2):256–65. https://doi.org/10.1091/mbc.E10-06-0551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Owens K, Park JH, Gourley S, Jones H, Kristian T. Mitochondrial dynamics: cell-type and hippocampal region specific changes following global cerebral ischemia. J Bioenerg Biomembr. 2015;47(1–2):13–31. https://doi.org/10.1007/s10863-014-9575-7.

    Article  PubMed  CAS  Google Scholar 

  54. Zhao YX, Cui M, Chen SF, Dong Q, Liu XY. Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci Ther. 2014;20(6):528–38. https://doi.org/10.1111/cns.12266.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S, et al. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J. 2006;25(16):3900–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kumar R, Bukowski MJ, Wider JM, Reynolds CA, Calo L, Lepore B, et al. Mitochondrial dynamics following global cerebral ischemia. Mol Cell Neurosci. 2016; https://doi.org/10.1016/j.mcn.2016.08.010.

  57. Chen SD, Lin TK, Yang DI, Lee SY, Shaw FZ, Liou CW, et al. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury. Biochem Biophys Res Commun. 2015;460(2):397–403. https://doi.org/10.1016/j.bbrc.2015.03.045.

    Article  PubMed  CAS  Google Scholar 

  58. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125(Pt 4):795–9. https://doi.org/10.1242/jcs.093849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31. https://doi.org/10.1038/ncb2012.

    Article  PubMed  CAS  Google Scholar 

  60. Brown GC. Nitric oxide and neuronal death. Nitric Oxide. 2010;23(3):153–65. https://doi.org/10.1016/j.niox.2010.06.001.

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 2016;37(1):73–84. https://doi.org/10.1016/j.tips.2015.10.002.

    Article  PubMed  CAS  Google Scholar 

  62. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, et al. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324(5923):102–5. https://doi.org/10.1126/science.1171091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Bossy B, Petrilli A, Klinglmayr E, Chen J, Lutz-Meindl U, Knott AB, et al. S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J Alzheimers Dis. 2010;20(Suppl 2):S513–26. https://doi.org/10.3233/JAD-2010-100552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol. 2014;193(5):2531–7. https://doi.org/10.4049/jimmunol.1400918.

    Article  PubMed  CAS  Google Scholar 

  65. Butterfield DA, Di Domenico F, Swomley AM, Head E, Perluigi M. Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in Down’s syndrome and Alzheimer’s disease brain. Biochem J. 2014;463(2):177–89. https://doi.org/10.1042/BJ20140772.

    Article  PubMed  CAS  Google Scholar 

  66. Sunico CR, Nakamura T, Rockenstein E, Mante M, Adame A, Chan SF, et al. S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson's disease. Mol Neurodegener. 2013;8:29. https://doi.org/10.1186/1750-1326-8-29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nakamura T, Lipton SA. Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxid Redox Signal. 2013;18(3):239–49. https://doi.org/10.1089/ars.2012.4703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Benhar M, Forrester MT, Stamler JS. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol. 2009;10(10):721–32. https://doi.org/10.1038/nrm2764.

    Article  PubMed  CAS  Google Scholar 

  69. Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M. Nitrosative stress, hypernitrosylation, and autoimmune responses to nitrosylated proteins: new pathways in neuroprogressive disorders including depression and chronic fatigue syndrome. Mol Neurobiol. 2016; https://doi.org/10.1007/s12035-016-9975-2.

  70. Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta. 2009;1789(1):58–68. https://doi.org/10.1016/j.bbagrm.2008.07.009.

    Article  PubMed  CAS  Google Scholar 

  71. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120. https://doi.org/10.1146/annurev.biochem.70.1.81.

    Article  PubMed  CAS  Google Scholar 

  72. Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8(4):284–95. https://doi.org/10.1038/nrm2145.

    Article  PubMed  CAS  Google Scholar 

  73. Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 2000;19(6):1176–9. https://doi.org/10.1093/emboj/19.6.1176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Norvell A, McMahon SB. Cell biology. Rise of the rival. Science. 2010;327(5968):964–5. https://doi.org/10.1126/science.1187159.

    Article  PubMed  CAS  Google Scholar 

  75. Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J. 2016;52(1):1–11. https://doi.org/10.4068/cmj.2016.52.1.1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23. https://doi.org/10.1016/j.gene.2005.09.010.

    Article  PubMed  CAS  Google Scholar 

  77. Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J, et al. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxidative Med Cell Longev. 2014;2014:641979. https://doi.org/10.1155/2014/641979.

    Article  CAS  Google Scholar 

  78. Owens K, Park JH, Schuh R, Kristian T. Mitochondrial dysfunction and NAD+ metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res. 2013;4:618–34.

    Article  PubMed  CAS  Google Scholar 

  79. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10):4623–35. https://doi.org/10.1091/mbc.E05-01-0033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2):105–14. https://doi.org/10.1016/j.cmet.2007.07.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab. 2011;31(4):1003–19. https://doi.org/10.1038/jcbfm.2010.229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18(6):920–33. https://doi.org/10.1016/j.cmet.2013.11.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50(6):919–30. https://doi.org/10.1016/j.molcel.2013.06.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19(4):605–17. https://doi.org/10.1016/j.cmet.2014.03.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Parthun MR. Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene. 2007;26(37):5319–28. https://doi.org/10.1038/sj.onc.1210602.

    Article  PubMed  CAS  Google Scholar 

  86. Scott I, Webster BR, Li JH, Sack MN. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem J. 2012;443(3):655–61. https://doi.org/10.1042/BJ20120118.

    Article  PubMed  CAS  Google Scholar 

  87. Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, et al. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J Cell Sci. 2013;126(Pt 21):4843–9. https://doi.org/10.1242/jcs.131300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Starcevic M, Dell'Angelica EC. Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Biol Chem. 2004;279(27):28393–401. https://doi.org/10.1074/jbc.M402513200.

    Article  PubMed  CAS  Google Scholar 

  89. Lee JY, Kapur M, Li M, Choi MC, Choi S, Kim HJ, et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J Cell Sci. 2014;127(Pt 22):4954–63. https://doi.org/10.1242/jcs.157321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Verdone L, La Fortezza M, Ciccarone F, Caiafa P, Zampieri M, Caserta M. Poly(ADP-ribosyl)ation affects histone acetylation and transcription. PLoS One. 2015;10(12):e0144287. https://doi.org/10.1371/journal.pone.0144287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009;32(11):591–601. https://doi.org/10.1016/j.tins.2009.06.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem. 2004;89(6):1358–67. https://doi.org/10.1111/j.1471-4159.2004.02406.x.

    Article  PubMed  CAS  Google Scholar 

  93. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther. 2007;321(3):892–901. https://doi.org/10.1124/jpet.107.120188.

    Article  PubMed  CAS  Google Scholar 

  94. Faraco G, Pancani T, Formentini L, Mascagni P, Fossati G, Leoni F, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol. 2006;70(6):1876–84. https://doi.org/10.1124/mol.106.027912.

    Article  PubMed  CAS  Google Scholar 

  95. Meisel A, Harms C, Yildirim F, Bosel J, Kronenberg G, Harms U, et al. Inhibition of histone deacetylation protects wild-type but not gelsolin-deficient neurons from oxygen/glucose deprivation. J Neurochem. 2006;98(4):1019–31. https://doi.org/10.1111/j.1471-4159.2006.04016.x.

    Article  PubMed  CAS  Google Scholar 

  96. Yildirim F, Gertz K, Kronenberg G, Harms C, Fink KB, Meisel A, et al. Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp Neurol. 2008;210(2):531–42. https://doi.org/10.1016/j.expneurol.2007.11.031.

    Article  PubMed  CAS  Google Scholar 

  97. Hart GW, Akimoto Y. The O-GlcNAc modification. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al., editors. Essentials of Glycobiology. 2nd ed. NY: Cold Spring Harbor; 2009.

    Google Scholar 

  98. Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys. 2003;409(2):287–97.

    Article  PubMed  CAS  Google Scholar 

  99. Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci. 2003;116(Pt 4):647–54.

    Article  PubMed  CAS  Google Scholar 

  100. Makino A, Suarez J, Gawlowski T, Han W, Wang H, Scott BT, et al. Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1296–302. https://doi.org/10.1152/ajpregu.00437.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Liu J, Marchase RB, Chatham JC. Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am J Physiol Heart Circ Physiol. 2007;293(3):H1391–9. https://doi.org/10.1152/ajpheart.00285.2007.

    Article  PubMed  CAS  Google Scholar 

  102. Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006;7(7):517–28. https://doi.org/10.1038/nrm1963.

    Article  PubMed  CAS  Google Scholar 

  103. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, et al. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun. 2014;5:4426. https://doi.org/10.1038/ncomms5426.

    Article  PubMed  CAS  Google Scholar 

  104. Daniels CM, Ong SE, Leung AK. The promise of proteomics for the study of ADP-ribosylation. Mol Cell. 2015;58(6):911–24. https://doi.org/10.1016/j.molcel.2015.06.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Barkauskaite E, Jankevicius G, Ahel I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell. 2015;58(6):935–46. https://doi.org/10.1016/j.molcel.2015.05.007.

    Article  PubMed  CAS  Google Scholar 

  106. Gagne JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 2008;36(22):6959–76. https://doi.org/10.1093/nar/gkn771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gagne JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, et al. Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res. 2012;40(16):7788–805. https://doi.org/10.1093/nar/gks486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Carter-O'Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I, et al. Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach. Cell Rep. 2016;14(3):621–31. https://doi.org/10.1016/j.celrep.2015.12.045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Szczesny B, Brunyanszki A, Olah G, Mitra S, Szabo C. Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Res. 2014;42(21):13161–73. https://doi.org/10.1093/nar/gku1089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rossi MN, Carbone M, Mostocotto C, Mancone C, Tripodi M, Maione R, et al. Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J Biol Chem. 2009;284(46):31616–24. https://doi.org/10.1074/jbc.M109.025882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Niere M, Mashimo M, Agledal L, Dolle C, Kasamatsu A, Kato J, et al. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J Biol Chem. 2012;287(20):16088–102. https://doi.org/10.1074/jbc.M112.349183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–10. https://doi.org/10.1016/j.nbd.2016.07.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Rogers LD, Overall CM. Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol Cell Proteomics. 2013;12(12):3532–42. https://doi.org/10.1074/mcp.M113.031310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ishihara N, Fujita Y, Oka T, Mihara K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006;25(13):2966–77. https://doi.org/10.1038/sj.emboj.7601184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 2014;19(4):630–41. https://doi.org/10.1016/j.cmet.2014.03.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014;204(6):919–29. https://doi.org/10.1083/jcb.201308006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101(45):15927–32. https://doi.org/10.1073/pnas.0407043101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003;278(10):7743–6. https://doi.org/10.1074/jbc.C200677200.

    Article  PubMed  CAS  Google Scholar 

  119. Olichon A, Guillou E, Delettre C, Landes T, Arnaune-Pelloquin L, Emorine LJ, et al. Mitochondrial dynamics and disease, OPA1. Biochim Biophys Acta. 2006;1763(5–6):500–9. https://doi.org/10.1016/j.bbamcr.2006.04.003.

    Article  PubMed  CAS  Google Scholar 

  120. Satoh M, Hamamoto T, Seo N, Kagawa Y, Endo H. Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem Biophys Res Commun. 2003;300(2):482–93.

    Article  PubMed  CAS  Google Scholar 

  121. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT, et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22(4):476–88. https://doi.org/10.1101/gad.460708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell. 2009;20(15):3525–32. https://doi.org/10.1091/mbc.E09-03-0252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Akepati VR, Muller EC, Otto A, Strauss HM, Portwich M, Alexander C. Characterization of OPA1 isoforms isolated from mouse tissues. J Neurochem. 2008;106(1):372–83. https://doi.org/10.1111/j.1471-4159.2008.05401.x.

    Article  PubMed  CAS  Google Scholar 

  124. Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, et al. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem. 2006;281(49):37972–9. https://doi.org/10.1074/jbc.M606059200.

    Article  PubMed  CAS  Google Scholar 

  125. Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178(5):749–55. https://doi.org/10.1083/jcb.200704110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kasashima K, Sumitani M, Satoh M, Endo H. Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res. 2008;314(5):988–96. https://doi.org/10.1016/j.yexcr.2008.01.005.

    Article  PubMed  CAS  Google Scholar 

  127. Kurinami H, Shimamura M, Ma T, Qian L, Koizumi K, Park L, et al. Prohibitin viral gene transfer protects hippocampal CA1 neurons from ischemia and ameliorates postischemic hippocampal dysfunction. Stroke. 2014;45(4):1131–8. https://doi.org/10.1161/STROKEAHA.113.003577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Stiburek L, Cesnekova J, Kostkova O, Fornuskova D, Vinsova K, Wenchich L, et al. YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell. 2012;23(6):1010–23. https://doi.org/10.1091/mbc.E11-08-0674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 2009;187(7):1023–36. https://doi.org/10.1083/jcb.200906084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Baker MJ, Lampe PA, Stojanovski D, Korwitz A, Anand R, Tatsuta T, et al. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 2014;33(6):578–93. https://doi.org/10.1002/embj.201386474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126(1):163–75. https://doi.org/10.1016/j.cell.2006.06.021.

    Article  PubMed  CAS  Google Scholar 

  132. Duvezin-Caubet S, Koppen M, Wagener J, Zick M, Israel L, Bernacchia A, et al. OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell. 2007;18(9):3582–90. https://doi.org/10.1091/mbc.E07-02-0164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177–89. https://doi.org/10.1016/j.cell.2006.06.025.

    Article  PubMed  CAS  Google Scholar 

  134. Griparic L, Kanazawa T, van der Bliek AM. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol. 2007;178(5):757–64. https://doi.org/10.1083/jcb.200704112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Baburamani AA, Hurling C, Stolp H, Sobotka K, Gressens P, Hagberg H, et al. Mitochondrial optic atrophy (OPA) 1 processing is altered in response to neonatal hypoxic-ischemic brain injury. Int J Mol Sci. 2015;16(9):22509–26. https://doi.org/10.3390/ijms160922509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, et al. The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem. 2011;286(6):4772–82. https://doi.org/10.1074/jbc.M110.167155.

    Article  PubMed  CAS  Google Scholar 

  137. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24. https://doi.org/10.1038/nrm3838.

    Article  PubMed  CAS  Google Scholar 

  138. Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, et al. Interplay between miRNAs and human diseases. J Cell Physiol. 2017; https://doi.org/10.1002/jcp.25854.

  139. Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 2011;17(1):71–8. https://doi.org/10.1038/nm.2282.

    Article  PubMed  CAS  Google Scholar 

  140. Long B, Wang K, Li N, Murtaza I, Xiao JY, Fan YY, et al. miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic Biol Med. 2013;65:371–9. https://doi.org/10.1016/j.freeradbiomed.2013.07.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Wang K, Long B, Jiao JQ, Wang JX, Liu JP, Li Q, et al. miR-484 regulates mitochondrial network through targeting Fis1. Nat Commun. 2012;3:781. https://doi.org/10.1038/ncomms1770.

    Article  PubMed  CAS  Google Scholar 

  142. Li J, Li Y, Jiao J, Wang J, Li Y, Qin D, et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol. 2014;34(10):1788–99. https://doi.org/10.1128/MCB.00774-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was funded by U.S. Veterans Affairs Merit grant BX000917 to TK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kristian.

Ethics declarations

Conflict of Interest

Nina Klimova, Aaron Long, and Dr. Tibor Kristian declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimova, N., Long, A. & Kristian, T. Significance of Mitochondrial Protein Post-translational Modifications in Pathophysiology of Brain Injury. Transl. Stroke Res. 9, 223–237 (2018). https://doi.org/10.1007/s12975-017-0569-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0569-8

Keywords

Navigation