Skip to main content
Log in

Allelic variation at the gliadin coding loci of improved Ethiopian durum wheat varieties

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to determine gliadin allele compositions of 20 improved Ethiopian durum wheat varieties using acid-polyacrylamide gel electrophoresis (A-PAGE). Each block of co-dominantly inherited polypeptides encoded by gliadin loci were identified and their genetic diversities were estimated using statistical analyses. A total of 30 electrophoretic blocks were identified at five major gliadin loci. In addition, four novel gliadin blocks were identified. Gli-B1 and Gli-A2 loci had higher numbers of gliadin alleles (nine and ten, respectively) compared to other loci. Alleles Gli-A1c on chromosome 1A, Gli-B1c on chromosome 1B, Gli-A2a, and Gli-A2o on chromosome 6A, and Gli-B2h on chromosome 6B had maximal frequencies in their corresponding loci. Varieties were classified into three main clusters and one singleton based on genetic distances of detected gliadin alleles. These results indicate that Ethiopian durum wheat varieties are genetically diverse with unique allele compositions at gliadin-coding loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson OD, Huo N, Guo YQ. 2013. The gene space in wheat: the complete gliadin gene family from the wheat cultivar Chinese Spring. Funct. Integr Genomics 13: 261–273

    Article  CAS  PubMed  Google Scholar 

  • Chernakov VM, Metakovsky EV. 1994. Allelic variation at the gliadin-coding loci and evaluation of genetic similarity of common wheat cultivars bred in different breeding centers. Genetika 30: 509–517

    Google Scholar 

  • Cros DU, Wrigley CW, Hare RA. 1982. Prediction of durum-wheat quality from gliadin-protein composition. Crop Pasture Sci. 33(3): 429–442

    Article  Google Scholar 

  • Dachkevitch T, Redaelli R, Biancardi AM, Metakovsky EV, Pogna NE. 1993. Genetics of gliadins coded by the group 1 chromosomes in the high-quality bread wheat cultivar Neepawa. Theor. Appl. Genet. 86(2–3): 389–399

    CAS  PubMed  Google Scholar 

  • FAO. 2014. Analysis of price incentives for wheat in Ethiopia. Technical Notes Series, MAFAP, Rome

    Google Scholar 

  • Harsch S, Günther T, Rozynek B, Hesemann CU, Kling CI. 1997. Characterization of spelt (Triticum spelta L.) forms by gel electrophoretic analyses of seed storage proteins. I. The gliadins. Theor. Appl. Genet. 94(1): 52–60

    Article  CAS  PubMed  Google Scholar 

  • Jerry H. 2001. Number Cruncher Statistical Systems (NCSS) Statistical software, Utah

    Google Scholar 

  • Kudryavtsev AM, Boggini G, Benedettelli S, Illichevskii NN. 1996. Giladin polymorphism and genetic diversity of modern Italian durum wheat. J. Genet. Breed. 50: 239–248

    CAS  Google Scholar 

  • Kudryavtsev AM, Melnikova NV, Novoselskaya-Dragovich A. 2014. Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat, 57–61

    Google Scholar 

  • Letta T, Gezu G, Kudryavtsev A, Chiapparino E, D’Egidio MG. 2005. Genetic diversity of Ethiopian durum wheat varieties based on gliadin alleles. J. Genet. Breed. 59: 277–284

    CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC. 2013. Catalogue of Gene Symbols for Wheat

    Google Scholar 

  • Melnikova NV, Kudryavtsev AM. 2009. Allelic diversity at gliadin-coding gene loci in cultivars of spring durum wheat (Triticum durum Desf.) bred in Russia and former Soviet republics in the 20th century. Russ. J. Genet. 45(10): 1208–1214

    Article  CAS  Google Scholar 

  • Melnikova NV, Ganeva GD, Popova ZG, Landjeva SP, Kudryavtsev AM. 2010. Gliadins of Bulgarian durum wheat (Triticum durum Desf.) landraces: genetic diversity and geographical distribution. Genet. Resour. Crop Evol. 57(4): 587–595

    Article  Google Scholar 

  • Melnikova NV, Kudryavtseva AV, Kudryavtsev AM. 2012. Catalogue of alleles of gliadin-coding loci in durum wheat (Triticum durum Desf.). Biochimie 94(2): 551–557

    Article  CAS  PubMed  Google Scholar 

  • Metakovsky EV, Sozinov AA. 1987. Organization, variability and stability of the family of the gliadin-coding genes in wheat: genetic data. In R Lasztity, F Bekes, eds, Proceedings of the 3rd International Workshop on Gluten Proteins, Budapest, Hungary, May 9-12, 1987, Singapore

    Google Scholar 

  • Metakovsky EV, Knežević D, Javornik B. 1991. Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica 54(3): 285–295

    Google Scholar 

  • Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. 70(12): 3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novosel'skaia-Dragovich A, Fisenko AV, Pukhal'skiĭ VA. 2013. Genetic differentiation of common wheat cultivars using multiple alleles of gliadin-coding loci. Genetika 49(5): 569–79

    PubMed  Google Scholar 

  • Ojaghi J, Akhundova E. 2010. Genetic analysis for yield and its components in doubled haploid wheat. Afr. J. Agric. Res. 5(4): 306–315

    Google Scholar 

  • Payne PI, Holt LM, Lawrence GJ, Law CN. 1982. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Plant Foods Hum. Nutr. 31(3): 229–241

    Article  CAS  Google Scholar 

  • Pielou EC. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131–44

    Article  Google Scholar 

  • Rashed MA, Abou-Deif MH, Sallam MAA, Rizkalla AA, Ramadan WA. 2007. Identification and prediction of the flour quality of bread wheat by gliadin electrophoresis. J. Appl. Sci. Res. 3(11): 1393–1399

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatham AS, Shewry PR. 1985. The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of α-, β-, γ-and ω-gliadins. J. Cereal Sci. 3(2): 103–113

    Article  CAS  Google Scholar 

  • Utebayev M, Dashkevich S, Babkenov A, Shtefan G, Fahrudenova I, Bayahmetova S, Sharipova B, Kaskarbayev Z, Shavrukov Y. 2016. Application of gliadin polymorphism for pedigree analysis in common wheat (Triticum aestivum L.) from Northern Kazakhstan. Acta Physiol. Plant. 38(8): 204–216

    Article  Google Scholar 

  • Van Herpen TW, Goryunova SV, van der Schoot J, Mitreva M, Salentijn, E, Vorst O, Vosman B. 2006. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7(1): 1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Wrigley CW, Shepherd KW. 1973. Electrofocusing of grain proteins from wheat genotypes. Ann. NY Acad. Sci. 209(1): 154–162

    Article  CAS  PubMed  Google Scholar 

  • Žilić S, Barać M, Pešić M, Dodig D, Ignjatović-Micić D. 2011. Characterization of proteins from grain of different bread and durum wheat genotypes. Int. J. Mol. Sci. 12(9): 5878–5894

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Joong Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hailegiorgis, D., Lee, C.A. & Yun, S.J. Allelic variation at the gliadin coding loci of improved Ethiopian durum wheat varieties. J. Crop Sci. Biotechnol. 20, 287–293 (2017). https://doi.org/10.1007/s12892-017-0106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0106-0

Key words

Navigation