Skip to main content
Log in

Investigations on the Multifunctionality of Bismuth Iron Oxide

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Amongst various types of multiferroic compounds, bismuth ferrite (BiFeO3; BFO) stands out as it exhibits both magnetic and ferroelectric polarization orderings at room temperature. Till date, studies on BFO-based materials have mainly been focused on dielectric, ferroelectric, magnetic and on magnetoelectric coupling. The aim of the present work is to explore additional functionality of BFO ceramics. We have synthesized BFO ceramics using auto-combustion route and demonstrated its functionality as the anode of lithium ion recharging material, toxic gas-sensing material and photo-catalyst. As Li ion cell anode, we have shown that BFO, in half-cell configuration, yields a reversible capacity ~ 120 mAh/g with excellent cycleability. BFO has been demonstrated to be excellent sensing material for volatile organic compounds. Under solar illumination, BFO yields 99.5% degradation of coloured aromatic dye within 50 min. Our investigations pave the way to explore these new functionalities of BFO ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Catalan G, and Scott J F, Adv Mater 21 (2009) 2463.

    Article  Google Scholar 

  2. Fiebig M, J Phys D Appl Phys 38 (2005) 123.

    Article  Google Scholar 

  3. Ederer C, and Spaldin N A, Phys Rev B 71 (2005) 060401.

    Article  Google Scholar 

  4. Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, and Ramesh R, Science 299 (2003) 1719.

    Article  Google Scholar 

  5. Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, and Tokura Y, Phys Rev B 67 (2003) 180401.

    Article  Google Scholar 

  6. Rossell M D, Erni R, Prange M P, Idrobo J C, Luo W, Zeches R J, Pantelides S T, and Ramesh R, Phys Rev Lett 108 (2012) 047601.

    Article  Google Scholar 

  7. Choi T, Lee S, Choi Y J, Kiryukhin V, and Cheong S W, Science 324 (2009) 63.

    Article  Google Scholar 

  8. Yang S Y, Seidel J, Byrnes S J, Shafer P,Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W, and Ramesh R, Nat Nanotechnol 5 (2010) 143.

    Article  Google Scholar 

  9. Wu J, Fan Z, Xiao D, Zhu J, and Wang J, Prog Mater Sci 84 (2016) 335.

    Article  Google Scholar 

  10. Costa L V, Rocha L S, Cortés J A, Ramirez M A, Longo E, and Simões A Z, Ceram Int 41 (2015) 9265.

    Article  Google Scholar 

  11. Kubel F, and Schmid H, Acta Crystallogr B 46 (1990) 698.

    Article  Google Scholar 

  12. Rojac T, Bencan A, Drazic G, Sakamoto N, Ursic H, Jancar B, Tavcar G, Makarovic M, Walker J, Malic B, and Damjanovic D, Nat Mater 16 (2017) 322.

  13. Perejon A, Maso N, West A R, Sanchez-Jimenez P E, Poyato R, Criado J M, and Perez-Maqueda L A, J Am Ceram Soc 96 (2013) 1220.

    Article  Google Scholar 

  14. Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Yang C H, Musfeldt J L, Schlom D G, Ager J W, and Ramesh R, Appl Phys Lett 95 (2009) 062909.

    Article  Google Scholar 

  15. Campos L M, Tontcheva A, Gunes S, Sonmez G, Neugebauer H, Sariciftci N S, and Wudl F, Chem Mater 17 (2005) 4031.

  16. Bhatnagar A, Chaudhuri A R, Kim Y H, Hesse D, and Alexe M, Nat Commun 4 (2013) 3835.

    Article  Google Scholar 

  17. Fridkin V M, Springer Series in Solid-State Sciences, 9 Springer, New York (1979).

    Google Scholar 

  18. Bai Z, Geng W, Zhang Y, Xu S, Guo H, and Jiang A, Appl Phys A 123 (2017) 561.

    Article  Google Scholar 

  19. Gao R, Fu C, Cai W, Chen G, Deng X, and Cao X, J Electron Mater 46 (2017) 2373.

    Article  Google Scholar 

  20. Azmy H A M, Razuki N A, Aziz A W, Satar N S A, and Kaus N H M, J Phys Sci 28 (2017) 85.

    Article  Google Scholar 

  21. Zhang N, Chen D, Niu F, Wang S, Qin L, and Huang Y, Sci Rep 6 (2016) 26467.

    Article  Google Scholar 

  22. Yang M, Bhatnagar A, and Alexe M, Adv Electron Mater 1 (2015) 1500139.

    Article  Google Scholar 

  23. Jadhav VV, Zate MK, Liu S, Naushad M, Mane RS, Hui KN, Han SH, Appl Nanosci 6 (2016) 511

    Article  Google Scholar 

  24. Xia H, Yan F, Lai M O, and Lu L, Funct Mater Lett 2 (2009) 163.

    Article  Google Scholar 

  25. Durai L, Moorthy B, Thomas C I, Kim D K, and Bharathi K K, Mater Sci Semicond Process 68 (2017) 165.

    Article  Google Scholar 

  26. Dong G, Fan H, Tian H, Fang J, and Li Q, RSC Adv 5 (2015) 29618.

    Article  Google Scholar 

  27. Dziubaniuk M, Koronska R B, Suchanicz J, Wyrwa J, and Rekas M, Sens Actuators B 188 (2013) 957.

    Article  Google Scholar 

  28. Chakraborty S, and Pal M, New J Chem 42 (2018) 7188.

    Article  Google Scholar 

  29. Ghosh A, Maity A, Banerjee R, and Majumder S B, J Alloys Compd 692 (2017) 108.

    Article  Google Scholar 

  30. Hunpratub S, Thongbai P, Yamwong T, Yimnirun R, and Maensiri S, Appl Phys Lett 94 (2009) 062904.

    Article  Google Scholar 

  31. Kamba S, Nuzhnyy D, Savinov M, Sebek J, Petzelt J, Prokleska J, Haumont R, and Kreisel J, Phys Rev B 75 (2007) 024403.

    Article  Google Scholar 

  32. Markiewicz E, Hilczer B, Blaszyk M, Pietraszko A, and Talik E, J. Electroceram 27 (2011) 154.

    Article  Google Scholar 

  33. Ma Y, Chen X M, and Lin Y Q, J Appl Phys 103 (2008) 124111.

    Article  Google Scholar 

  34. Ang C, Yu Z, and Cross L E, Phys Rev B 62 (2000) 228.

    Article  Google Scholar 

  35. Waser R, Baiatu T, and Hrdtl K H, J Am Ceram Soc 73 (1990) 1645.

    Article  Google Scholar 

  36. Das R, Sharma S, and Mandal K, J Magn Magn Mater 401 (2016) 129.

    Article  Google Scholar 

  37. Sinclair D C, and West A R, J Appl Phys 66 (1989) 3850.

    Article  Google Scholar 

  38. Maso N, and West A R, Chem Mater 24 (2012) 2127.

    Article  Google Scholar 

  39. Cheng Z X, Li A H, Wang X L, Dou S X, Ozawa K, Kimura H, Zhang S J, and Shrout T R, J Appl Phys 103 (2008) 07E507.

    Article  Google Scholar 

  40. Verma V, Beniwal A, Ohlan A, and Tripathi R, J Magn Magn Mater 394 (2015) 385.

    Article  Google Scholar 

  41. Sarkar M, Balakumar S, Saravanan P, and Bharathkumar S, Nanoscale 7 (2015) 10667.

    Article  Google Scholar 

  42. Fengzhen H, Zhijun W, Xiaomei L, Junting Z, Kangli M, Weiwei L, Ruixia T, TingTing X, Ju H, Chen Y, and Jinsong Z, Sci Rep 3 (2013) 2907.

    Article  Google Scholar 

  43. Yang Y C, Liu Y, Wei J H, Pan C X, Xiong R, and Shi J, RSC Adv 4 (2014) 31941.

    Article  Google Scholar 

  44. Halasi G, Schubert G, and Solymosi F, J Catal 294 (2012) 199.

    Article  Google Scholar 

  45. Kiriakidou F, Kondarides D I, and Verykios X E, Catal Today 54 (1999) 119.

    Article  Google Scholar 

  46. Fridkin V M, Photoferroelectrics, Springer (1979).

  47. Feng Y-N, Wang H-C, Luo Y-D, Shen Y, and Lin Y-H, J Appl Phys 113 (2013) 146101.

    Article  Google Scholar 

  48. Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, and Davies P K, Nature 503 (2013) 509.

    Article  Google Scholar 

  49. Soltani T, and Entezari M H, Ultraso Sonochem 20 (2013) 1245.

    Article  Google Scholar 

  50. Soltani T, and Entezari M H, Chem Eng J 223 (2013) 145.

    Article  Google Scholar 

  51. Sharma N, Shaju K M, Rao G V S, and Chowdari B V R, Electrochem Commun 4 (2002) 947.

    Article  Google Scholar 

  52. Zhang D W, Xie S, and Chen C H, J Electroceram 15 (2005) 109.

    Article  Google Scholar 

  53. Hu Y S, Guo Y G, Sigle W, Hore S, Balaya P, and Maier J, Nat Mater 5 (2006) 713.

    Article  Google Scholar 

  54. Zhang Y, Xu H, Dong S, Han R, Liu X, Wang Y, Li S, Bu Q, Li X, and Xiang J, J Mater Sci Mater Electron 29 (2018) 2193.

    Google Scholar 

  55. Zhu H, Zhang P, and Dai S, ACS Catal 5 (2015) 6370.

    Article  Google Scholar 

  56. Tasaki T, Takase S, and Shimizu Y, J Sens Technol 2 (2012) 75.

    Article  Google Scholar 

  57. Addabbo T, Bertocci F, Fort A, Gregorkiewitz M, Mugnaini M, Spinicci R, and Vignoli V, Sens Actuators B 221 (2015) 1137.

    Article  Google Scholar 

  58. Tong T, Chen J, Jin D, and Cheng J, Mater Lett 197 (2017) 160.

    Article  Google Scholar 

Download references

Acknowledgements

The research work was partially supported by the research grant obtained from CSIR, Government of India, vide sanction letter No. 03/(1371)/16/EMR-II, dated May 10, 2016 and DST, Government of India, vide sanction letter Nos. 5(1)/2017-NANO dated March 28, 2018 and DST/NM/NNETRA/2018(G)-IIT KGP dated March 21, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewan, M., Majumder, S.B. Investigations on the Multifunctionality of Bismuth Iron Oxide. Trans Indian Inst Met 72, 2061–2072 (2019). https://doi.org/10.1007/s12666-018-01554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-01554-3

Keywords

Navigation