Skip to main content
Log in

Microstructure, Mechanical and Intergranular Corrosion Behavior of Dissimilar DSS 2205 and ASS 316L Shielded Metal Arc Welds

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

There are many industrial situations particularly in petro-chemical, marine, power plant and other such industries where the use of dissimilar metal weldments is necessary, mainly due to economic benefits and also sometimes to improve the performance of the component. Both austenitic stainless steels and duplex stainless steels have received much attention in recent days due to their superior anti-corrosive and mechanical properties. Further, the use of shielded metal arc welding (SMAW) process is inevitable in engineering industries. In the present work, microstructure, mechanical and intergranular corrosion behavior of dissimilar 2205 duplex stainless steel and 316L austenitic stainless steel fabricated by SMAW process using E2209 electrode by taking two different heat input (0.45–0.60 kJ/mm) was investigated. The microstructures were characterized by using optical microscopy and scanning electron microscopy (SEM), while the localized chemical information was obtained by an energy dispersive spectrometer attached to the SEM. Double loop electrochemical potentiokinetic reactivation test was performed to quantitatively assessing the intergranular corrosion based on degree of sensitization. The effect of weld dilution on mechanical properties (i.e. tensile/hardness properties) was also studied. The ferrite content was experimentally measured by using ferritoscope and it was observed that the weld joint achieved the required ferrite content for both the heat inputs. Higher ferrite content (results of faster cooling rate) increased the hardness and tensile strength of low heat input as compared to high heat input. While, high heat input improved the corrosion resistance due to formation of higher austenitic phases. Higher impact energy was observed in E2209 weld metal than that of the base metals. No welding defects were observed and recommended for industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Plauta R L, Herrera C, Escriba D M, Rios P R, and Padilha A F, Mater Res 10 (2007) 453.

    Article  Google Scholar 

  2. Kim Y H, Kim D G, Sung J H, Kim I S, Ko D E, Kang N H, Hong H U, Park J H, and Lee H W, Met Mater Int 17 (2011) 151.

    Article  Google Scholar 

  3. Labanowski J, J Arch Mater Sci Eng 28 (2007) 27.

    Google Scholar 

  4. Padilha A F, and Rios P R, ISIJ Int 42 (2002) 325.

    Article  Google Scholar 

  5. Hoffman J P, J S Afr Inst Min Metal 86 (1986) 433.

    Google Scholar 

  6. Chowdhury S G, Das S and De P K, Acta Materialia 53 (2005) 3951.

    Article  Google Scholar 

  7. Valsan M, and Nagesha A, Trans Ind Inst Met 63 (2010) 209.

    Article  Google Scholar 

  8. Amudarasan N V, Palanikumar K, and Shanmugam K, Int J App. Innov Eng Manag 2 (2013) 269.

    Google Scholar 

  9. Mathew M D, Latha S, and Bhanu Sankara Rao K, Mater Sci Eng A 456 (2007) 28.

    Article  Google Scholar 

  10. Charles J, in Proc Conf A Review after DSS07, Stainless Steel World, Grado, Italy, (2007).

    Google Scholar 

  11. Labanowski J, J Achiev Mater Manuf Eng 20 (2007) 255.

    Google Scholar 

  12. Malik A U, Al-Fozan S A, and Romiahl M Al, in Proc of 2nd Scientific Symp on Relevance of Corrosion Research in the Material Selection for Desalination Plants Maintenance Planning and Operations, Saud University, Riyadh, 24–26 April, (1993) p 885.

  13. Sieurin H, and Sandstrom R, Mater Sci Eng A 418 (2006) 250.

    Article  Google Scholar 

  14. Voronenko B I, Met Sci Heat Treat 39 (1997) 428.

    Article  Google Scholar 

  15. Hwang H, and Park Y, Mater Trans 50 (2009) 1548.

    Article  Google Scholar 

  16. Chakrabarti B, Das H, Das S, and Pal T K, Trans Ind Inst Met 66 (2013) 221.

    Article  Google Scholar 

  17. Olsson J, and Snis M, Desalin 205 (2007) 104.

    Article  Google Scholar 

  18. Hassan A M, and Malik A U, Desalin 74 (1989) 157.

    Article  Google Scholar 

  19. Kuwayama K, Water Tank built to last 60 years, Nickel Development Institute 10 (1994) available at http://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/WaterTankBuilttoLast60Years.

  20. Tuthill A H, Stainless Steels and Specialty Alloys for Modern Pulp and Paper Mills, Nickel Development Instistitute, Reference Book Series no. 11025, 87.

  21. Reddy G M, and Rao K S, Int J Adv Manuf Technol 45 (2009) 875.

    Article  Google Scholar 

  22. Wang S, Ma Q, and Li Y, Mater Des 32 (2011) 831.

    Article  Google Scholar 

  23. Hariom and Pandey S, Sadhana 38 (2013) 1369.

    Article  Google Scholar 

  24. Sidhu G S, and Chatha S S, Int J Emerg Technol Adv Eng 2 (2012) 746.

    Google Scholar 

  25. Gunn R N, Duplex Stainless Steels, Microstructure Properties and Applications, Abington Publishing, Cambridge, England (1997).

    Book  Google Scholar 

  26. Mvola B, Kah P, and Martikainen J, Rev Adv Mater Sci 38 (2014) 125.

    Google Scholar 

  27. Rahmani M, Eghlimi A, and Shamanian M, J Mater Eng Perform 23 (2014) 3745.

    Article  Google Scholar 

  28. Bala Srinivasan P, Muthupandi V, Dietzel W, and Sivan V, Mater Des 27 (2006) 182.

    Article  Google Scholar 

  29. Barnhouse E J, and Lippold J C, Weld J 77 (1998) 477s.

    Google Scholar 

  30. Wang J, Lu M, Zhang L, Chang W, Xu L, and Hu L, Int J Miner Metall Mater 19 (2012) 518.

    Article  Google Scholar 

  31. Vashishtha H, Taiwade R V, Khatirkar R K, Ingle A V, and Dayal R K, ISIJ Int 54 (2014) 1361.

    Article  Google Scholar 

  32. Unnikrishnan R, Satish Idury K S N, Ismail T P, Bhadauria A, Shekhawat S K, Khatirkar R K, and Sapate S G, Mater Charact 3 (2014) 10.

    Google Scholar 

  33. Standard Practice for Preparation of Metallographic Specimens, E 3-95, ASTM, PA, USA (1995).

  34. Metallography and Microstructures, Materials Park, OH: ASM International, ASM Handbook (2004).

  35. Standard Test Methods for Tensile Testing of Metallic Materials, E 8-04, ASTM, PA, USA (2004).

  36. Standard Practice for Preparation Notched Impact Testing of Metallic Material, E23-04, ASTM, PA, USA (2004).

  37. Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels, ASTM G108-94, ASTM, PA, USA (1994).

  38. Arıkan M E, Arıkan R, and Doruk M, Int J Corros (2012), doi:10.1155/2012/478508.

    Google Scholar 

  39. Majidi A P, and Streicher M A, Corros (1984), doi: 10.5006/1.3581921.

    Google Scholar 

  40. Luz T, Farias J P, and Neto P, Weld Int 20 (2006) 959.

    Article  Google Scholar 

  41. Taiwade R V, Patil A P, Ghugal R D, Patre S J, and Dayal R K, ISIJ Int 53 (2013) 102.

    Article  Google Scholar 

  42. Akbari D, and Sattari-Far I, Int J Press Vessel Pip 86 (2009) 769.

    Article  Google Scholar 

  43. Samir Y M, Int J Res Eng Technol 4 (2015) 44.

    Google Scholar 

  44. Duan Z, Qin R, and Guo H E, Metall Mater Trans A 45A (2013) 843.

    Google Scholar 

  45. Sun P, Liu C, and Xu J, Commun Comput Phys 6 (2009) 1095.

    Article  Google Scholar 

  46. Lu S, Fujii H, Sugiyama H, Tanaka M, and Nogi K, Mater Trans 43 (2002) 2926.

    Article  Google Scholar 

  47. Sadeghian M, Shamanian M, and Shafyei A, Mater Des 60 (2014) 678.

    Article  Google Scholar 

  48. Ramkumar K D, Bajpai A, Raghuvanshi S, Singh A, Chandrasekhar A, Arivarasu M, and Arivazhagan N, Mater Sci Eng A 638 (2015) 60.

    Article  Google Scholar 

  49. Reick W, Pohl M, and Padilha A F, ISIJ Int 38 (1998) 567.

    Article  Google Scholar 

  50. Leone G L, and Kerr H W, Weld J 61 (1982) 13s.

    Google Scholar 

  51. Kacar R, Mater Des 25 (2004) 1.

    Article  Google Scholar 

  52. Jayachitra R, Muthupandi V and Vijayalakshmi K, Int J Sci Res Publ 2 (2012) 1.

    Google Scholar 

  53. Armas I A, and Moreuil S D (ed) Duplex Stainless Steels, Wiley, NJ, USA (2009).

  54. Fu J W, Yang Y S, Guo J J, Ma J C, and Tong W H, Mater Sci Technol 25 (2009) 1013.

    Article  Google Scholar 

  55. Fourie J W, and Robinson F P A, J S Atr Inst Min Metall 90 (1990) 59.

    Google Scholar 

  56. Abdel Rahman M S, Abdel Rahman N A, and Koussy M R El, Acta Metallurgica Sinica 72 (2014) 259.

    Article  Google Scholar 

  57. Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, and Maza H, Mater Charact 59 (2008) 447.

    Article  Google Scholar 

  58. Eghlimi A, Shamanian M, and Raeissi K, J Mater Eng Perform 22 (2013) 3657.

    Article  Google Scholar 

  59. Karlsson L, Rigdal S, and Andersson S, Weld World 39 (1999) 99.

    Google Scholar 

  60. Shankar V, Gill T P S, Mannan S L, and Sundaresan S, Sadhana 28 (2003) 359.

    Article  Google Scholar 

  61. Lippold J C, and Kotecki D J, Welding Metallurgy and Weldability of Stainless Steel, Wiley, Hoboken, New Jersey (2005).

  62. Aguilar S, Tabares R, and Serna C, J Mater Phys Chem 1 (2013) 65.

    Google Scholar 

  63. Mukherjee M, and Pal T K, J Mater Sci Technol 28 (2012) 343.

    Article  Google Scholar 

  64. Kotecki D J and Siewert T A, Weld J 71 (1992) 171. Duplex World 2010

    Google Scholar 

  65. Sandor T, and Dobranszky J, Duplex World 2010 (2010). http://www.att.bme.hu/~femtech/letoltes/duplex-Sandor-2010.pdf.

  66. Chuaiphana W, and Srijaroenpramong L, J Mater Proc Technol 214 (2014) 408.

    Google Scholar 

  67. Hansen N, Scr Mater 51 (2004) 801.

    Article  Google Scholar 

  68. Keskitalo M, Mantyjarvi K, Sundqvist J, Powell J and Kaplan A F H, J Mater Process Technol 216 (2015) 381.

    Article  Google Scholar 

  69. Aydogdu G H and Aydinol M K, Corros Sci 48 (2006) 3565.

    Article  Google Scholar 

  70. Gideon B, Ward L and Biddle G, J Miner Mater Chract Engg 7 (2008) 247.

    Google Scholar 

  71. Yang Y, Yan B, Li J, Wang J, Corros Sci 53 (2011) 3756.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Director, VNIT Nagpur for providing necessary facilities and constant encouragement to publish this paper. The authors are also thankful to Mr. J. P Bhardwaj, General Manager, Weldfast Electrodes, Nagpur for providing the welding facilities and DSS 2209 electrode. The authors would also like to thank Mrs. Varsha Patankar (Technical staff, Testing of Materials Laboratory, Department of Metallurgical and Materials Engineering) for her help in conducting mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Vasantrao Taiwade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, J., Taiwade, R.V., Khatirkar, R.K. et al. Microstructure, Mechanical and Intergranular Corrosion Behavior of Dissimilar DSS 2205 and ASS 316L Shielded Metal Arc Welds. Trans Indian Inst Met 70, 225–237 (2017). https://doi.org/10.1007/s12666-016-0878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0878-8

Keywords

Navigation