Skip to main content
Log in

Effect of Multipass on Microstructure and Intergranular Corrosion Behavior of DSS 2205 Shielded Metal Arc Weld Thick Sections

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Duplex stainless steel (DSS) consists of dual structure, austenite and ferrite in equal proportion, which exhibits excellent resistance to corrosion. Various industries, i.e., pharmaceutical, marine, petrochemicals, etc., are facing challenges in thick section DSS welding to acquire preferred corrosion resistance properties. The present work aims to identify microstructure and intergranular corrosion behavior of DSS 2205 thick plate by multipass shielded metal arc welding using E2209 electrode. Weldment was examined for ferrite content, microstructure and intergranular corrosion (IGC) behavior by cutting across the weld. Microscopic results of weld zone revealed the presence of Widmanstatten austenite, intergranular austenite and grain boundary austenite, while partially transformed austenite was noticed at heat-affected zone. Degree of sensitization (DOS) at three distinguished weldment zones has been identified by electrochemical potentiokinetic reactivation test and found in good agreement with the standard and finding of more susceptibility of IGC in higher ferrite zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang Y, Sun T, Li J, and Xu J, Journal of Materials Science & Technology 30(2014)179.

    Article  CAS  Google Scholar 

  2. Xu J, Sun T, Zhang L, Li J, and Jiang Y, Journal of Materials Science & Technology 28(2012)474.

    Article  CAS  Google Scholar 

  3. Ibrahim O H, Ibrahim I S, and Khalifa T A F,Journal of Materials Science & Technology 26(2010)810.

    Article  CAS  Google Scholar 

  4. Momeni A, and Dehghani K,Journal of Materials Science & Technology 26(2010) 851.

    Article  CAS  Google Scholar 

  5. Moteshakker A, and Danaee I,Journal of Materials Science & Technology 32(2016) 282.

    Article  CAS  Google Scholar 

  6. Geng S, Sun J, Guo L, and Wang H,Journal of Manufacturing Processes 19(2015) 32.

    Article  Google Scholar 

  7. Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, and Maza H,Materials Characterization 59(2008) 447.

    Article  CAS  Google Scholar 

  8. Kang D H, and Lee H W,Corrosion Science 74 (2013) 396.

    Article  CAS  Google Scholar 

  9. Gupta A, Kumar A, Baskaran T, Arya SB, and Khatirkar R K, Transactions of the Indian Institute of Metals 71 (2018) 1595.

    Article  CAS  Google Scholar 

  10. Yousefieh M, Shamanian M, and Saatchi A,Journal of iron and steel research, international 18(2011) 65.

  11. Karlsson L, Rigdal S, and Andersson S L,Welding in the World/Le Soudage dans le Monde 2(1997) 99.

    Google Scholar 

  12. Sathiya P, Aravindan S, Soundararajan R, and Haq AN,Journal of materials science 44(2009) 114.

    Article  CAS  Google Scholar 

  13. Nilsson J O, Kangas P, Wilson A, and Karlsson T,Metallurgical and materials Transactions A 31(2000) 35.

    Article  Google Scholar 

  14. Shek C H, Shen G J, Lai J K L, and Duggan B J,Materials science and technology 10(1994) 306.

    Article  CAS  Google Scholar 

  15. Sato Y S, and Kokawa H,Scripta Materialia 40(1999) 659.

    Article  CAS  Google Scholar 

  16. Cortie M B, and Jackson E M L E M,Metallurgical and Materials Transactions A 28(1997) 2477.

    Article  Google Scholar 

  17. Xiong J, Tan M Y, and Forsyth M,Desalination 327 (2013) 39.

    Article  CAS  Google Scholar 

  18. Liou H Y, Hsieh R I, and Tsai W T,Corrosion Science 44(2002) 2841.

    Article  CAS  Google Scholar 

  19. Yang Y, Yan B, Li J, and Wang J,Corrosion Science 53(2011) 3756.

    Article  CAS  Google Scholar 

  20. Zhang Z, Wang Z, Jiang Y, Tan H, Han D, Guo Y, and Li J,Corrosion Science 62(2012) 42.

    Article  CAS  Google Scholar 

  21. Tan H, Wang Z, Jiang Y, Yang Y, Deng B, Song H, and Li J,Corrosion Science 55(2012) 368.

    Article  CAS  Google Scholar 

  22. Kordatos J D, Fourlaris G, and Papadimitriou G,Scripta materialia 44(2001) 401.

    Article  CAS  Google Scholar 

  23. Jiang W, Luo Y, Zhang G, Woo W, and Tu S T,Materials & Design 51(2013) 1052.

    Article  CAS  Google Scholar 

  24. Haghdadi N, Laleh M, Kosari A, Moayed M H, Cizek P, Hodgson P D, and Beladi H,Materials Letters 238(2019) 26.

    Article  CAS  Google Scholar 

  25. Zanotto F, Grassi V, Merlin M, Balbo A, and Zucchi F,Corrosion Science 94 (2015) 38.

    Article  CAS  Google Scholar 

  26. Kim S T, Lee I S, Kim J S, Jang S H, Park Y S, Kim K T, and Kim Y S, Corrosion science 64(2012) 164.

    Article  CAS  Google Scholar 

  27. Lopez N, Cid M, and Puiggali M,Corrosion Science 41(1999) 1615.

    Article  CAS  Google Scholar 

  28. Kwok C T, Lo K H, Chan W K, Cheng F T, and Man H C,Corrosion science 53(2011) 1581.

    Article  CAS  Google Scholar 

  29. Takei T, Yabe M, and Wei F G,Corrosion Science122, (2017) 80.

    Article  CAS  Google Scholar 

  30. Zhang Y J, Miyamoto G, Shinbo K, and Furuhara T,Scripta Materialia 69(2013) 17.

    Article  CAS  Google Scholar 

  31. ASTM E1086–14, Standard Test Method for Analysis of Austenitic Stainless Steel by Spark Atomic Emission Spectrometry (ASTM International, Philadelphia, 2014)

  32. ASME Boiler and Pressure Vessel code, Section V, Nondestructive Examination, American Society of Mechanical Engineers (2017)

  33. Kumar N, Kumar A, Gupta A, Gaikwad A D, and Khatirkar R K, Transactions of the Indian Institute of Metals 71(2018) 361.

    Article  CAS  Google Scholar 

  34. ASTM E3-95, Standard Practice for Preparation of Metallographic Specimens, ASTM, PA, USA (1995).

  35. ASTM A923-14, Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels, ASTM International, West Conshohocken, PA, (2014)

  36. ASTM G108-94, Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Types 304 and 304L Stainless Steels, ASTM Book of Standards, American Society for Testing of Metals, Philadephia PA (2015)

  37. ASTM E562-11, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count (ASTM International, West Conshohocken, PA, 2011).

  38. Dandekar T R, Gupta A, Kumar A, Khatirkar R K, and Vadavadagi B,Materials Research Express 5(2018) 106506.

  39. Wu M, Liu F, Pu J, Anderson N E, Li L, and Liu D,Journal of Materials Engineering and Performance, 26(2017) 5341.

    Article  CAS  Google Scholar 

  40. Kashiwar A, Vennela N P, Kamath S L, and Khatirkar R K,Materials Characterization 74(2012) 55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude toward Mr. Chandreshbhai Makadia, Vice President of GMM Pfaudler, Vallabh Vidhyanagar, for their support and granting permission to utilize welding facility and other resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagarkumar I. Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.I., Thakkar, H.R., Patel, K. et al. Effect of Multipass on Microstructure and Intergranular Corrosion Behavior of DSS 2205 Shielded Metal Arc Weld Thick Sections. Trans Indian Inst Met 75, 1867–1875 (2022). https://doi.org/10.1007/s12666-022-02566-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02566-w

Keywords

Navigation