Skip to main content
Log in

Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

This study reports zircon U-Pb and Hf isotopes and whole-rock elemental data for granodiorites from the East Kunlun orogen. The zircon U-Pb dating defines their crystallization age of 235 Ma. The rocks are characterized by high-K calc-alkaline, magnesian and metaluminous with (K2O+Na2O)=6.38 wt.%–7.01 wt.%, Mg#=42–50 [Mg#=100×molar Mg/(Mg+FeOT)], A/CNK=0.92–0.98, coupled with high ε Hf(t) values from -0.65 to -1.80. The rocks were derived from partial melting of a juvenile mafic crustal source within normal crust thickness. The juvenile lower crust was generated by mixing lithospheric mantle-derived melt (55%–60%) and supracrustal melt (40%–45%) during the seafloor subduction. Together with available data from the East Kunlun, it is proposed that the studied Middle Triassic granodiorites were formed in post-collisional extension setting, in which melting of the juvenile lower crust in response to the basaltic magma underplating resulted in the production of high-K granodioritic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ajaji, T., Weis, D., Giret, A., et al., 1998. Coeval Potassic and Sodic Calc-Alkaline Series in the Post-Collisional Hercynian Tanncherfi Intrusive Complex, Northeastern Morocco: Geochemical, Isotopic and Geochronological Evidence. Lithos, 45(1–4): 371–393. doi:10.1016/s0024-4937(98)00040-1

    Article  Google Scholar 

  • Barbarin, B., Didier, J., 1992. Genesis and Evolution of Mafic Microgranular Enclaves through Various Types of Interaction between Coexisting Felsic and Mafic Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 145–153. doi:10.1017/s0263593300007835

    Article  Google Scholar 

  • Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365–401. doi:10.1093/petrology/32.2.365

    Article  Google Scholar 

  • Beard, J., Ragland, P., Rushmer, T., 2004. Hydration Crystallization Reactions between Anhydrous Minerals and Hydrous Melt to Yield Amphibole and Biotite in Igneous Rocks: Description and Implications. The Journal of Geology, 112(5): 617–621. doi:10.1086/422670

    Article  Google Scholar 

  • Bellos, L. I., Castro, A., Díaz-Alvarado, J., et al., 2015. Multi-Pulse Cotectic Evolution and In-Situ Fractionation of Calc-Alkaline Tonalite-granodiorite Rocks, Sierra de Velasco Batholith, Famatinian Belt, Argentina. Gondwana Research, 27(1): 258–280. doi:10.1016/j.gr.2013.09.019

    Article  Google Scholar 

  • Bergemann, C., Jung, S., Berndt, J., et al., 2014. Generation of Magnesian, High-K Alkali-Calcic Granites and Granodiorites from Amphibolitic Continental Crust in the Damara Orogen, Namibia. Lithos, 198/199: 217–233. doi:10.1016/j.lithos.2014.03.033

    Article  Google Scholar 

  • Bian, Q. T., Li, D. H., Pospelov, I., et al., 2004. Age, Geochemistry and Tectonic Setting of Buqingshan Ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23(4): 577–596. doi:10.1016/j.jseaes.2003.09.003

    Article  Google Scholar 

  • Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258

    Article  Google Scholar 

  • Bouilhol, P., Jagoutz, O., Hanchar, J. M., et al., 2013. Dating the India-Eurasia Collision through Arc Magmatic Records. Earth and Planetary Science Letters, 366: 163–175. doi:10.1016/j.epsl.2013.01.023

    Article  Google Scholar 

  • Bucholz, C. E., Jagoutz, O., Schmidt, M. W., et al., 2014. Fractional Crystallization of High-K Arc Magmas: Biotite-Versus Amphibole-Dominated Fractionation Series in the Dariv Igneous Complex, Western Mongolia. Contributions to Mineralogy and Petrology, 168(5): 1–28. doi:10.1007/s00410-014-1072-9

    Article  Google Scholar 

  • Castro, A., 2013. Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis. Earth-Science Reviews, 124: 68–95. doi:10.1016/j.earscirev.2013.05.006

    Article  Google Scholar 

  • Castro, A., 2014. The Off-Crust Origin of Granite Batholiths. Geoscience Frontiers, 5(1): 63–75. doi:10.1016/j.gsf.2013.06.006

    Article  Google Scholar 

  • Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. doi:10.1016/s0024-4937(98)00086-3

    Article  Google Scholar 

  • Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173–174

    Google Scholar 

  • Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489–499. doi:10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Chen, N. S., Wang, X. Y., Zhang, H. F., et al., 2007a. Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science––Jorunal of China University of Geosciences, 32(1): 7–21 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, N. S., Xia, X. P., Li, X. Y., et al., 2007b. Timing of Magmatism of the Gneissic-Granite Plutons along North Qaidam Margin and Implications for Precambrian Crustal Accretions: Zircon U-Pb Dating and Hf Isotope Evidences. Acta Petrologica Sinica, 23(2): 501–512 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, X. H., Gehrels, G., Yin, A., et al., 2012. Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau: LA-ICP-MS Zircon U-Pb Geochronology and Its Geological Significance. Acta Geologica Sinica––English Edition, 86(2): 350–369. doi:10.1111/j.1755-6724.2012.00665.x

    Article  Google Scholar 

  • Chen, X. H., Gehrels, G., Yin, A., et al., 2015. Geochemical and Nd-Sr-Pb-O Isotopic Constrains on Permo-Triassic Magmatism in Eastern Qaidam Basin, Northern Qinghai-Tibetan Plateau: Implications for the Evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 114: 674–692. doi:10.1016/j.jseaes.2014.11.013

    Article  Google Scholar 

  • Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510–521 (in Chinese with English Abstract)

    Google Scholar 

  • Cocherie, A., Rossi, P., Fouillac, A. M., et al., 1994. Crust and Mantle Contributions to Granite Genesis—An Example from the Variscan Batholith of Corsica, France, Studied by Trace-Element and Nd-Sr-O Isotope Systematics. Chemical Geology, 115(3/4): 173–211. doi:10.1016/0009-2541(94)90186-4

    Article  Google Scholar 

  • Condie, K. C., 2014. Growth of Continental Crust: A Balance between Preservation and Recycling. Mineralogical Magazine, 78(3): 623–637. doi:10.1180/minmag.2014.078.3.11

    Article  Google Scholar 

  • Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. doi:10.2113/0530469

    Article  Google Scholar 

  • DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189–202. doi:10.1016/0012-821x(81)90153-9

    Article  Google Scholar 

  • Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266–283. doi:10.1016/j.lithos.2014.07.015

    Article  Google Scholar 

  • Ding, S., Huang, H., Niu, Y. L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27: 3603–3614 (in Chinese with English Abstract)

    Google Scholar 

  • Eyal, M., Litvinovsky, B., Jahn, B. M., et al., 2010. Origin and Evolution of Post-Collisional Magmatism: Coeval Neoproterozoic Calc-Alkaline and Alkaline Suites of the Sinai Peninsula. Chemical Geology, 269(3/4): 153–179. doi:10.1016/j.chemgeo.2009.09.010

    Article  Google Scholar 

  • Frost, B. R., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. doi:10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Gerdes, A., Kemp, A. I. S., Hanchar, J. M., et al., 2009. Accessory Minerals as Tracers of Crustal Processes. Chemical Geology, 261(3/4): 197–198. doi:10.1016/j.chemgeo.2009.03.001

    Article  Google Scholar 

  • Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74–86. doi:10.1007/s12583-014-0401-2

    Article  Google Scholar 

  • Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. doi:10.1016/s0016-7037(99)00343-9

    Article  Google Scholar 

  • Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. doi:10.1016/s0024-4937(02)00082-8

    Article  Google Scholar 

  • Harris, N. B. W., Xu, R. H., Lewis, C. L., et al., 1988. Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 263–285. doi:10.1098/rsta.1988.0129

    Article  Google Scholar 

  • Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1467–1477. doi:10.1016/0016-7037(84)90403-4

    Article  Google Scholar 

  • Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2): 229–248. doi:10.1144/0016-76492009-072

    Article  Google Scholar 

  • Honarmand, M., Omran, N. R., Neubauer, F., et al., 2015. Geochemistry of Enclaves and Host Granitoids from the Kashan Granitoid Complex, Central Iran: Implications for Enclave Generation by Interaction of Cogenetic Magmas. Journal of Earth Science, 26(5): 626–647. doi:10.1007/s12583-015-0584-1

    Article  Google Scholar 

  • Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. doi:10.2113/0530027

    Article  Google Scholar 

  • Hu, Y., Niu, Y. L., Li, J. Y., et al., 2015. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245(2): 205–222. doi:10.1016/j.lithos.2015.05.004

    Google Scholar 

  • Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27: 1391–1399. doi:10.1039/c2ja30078h

    Article  Google Scholar 

  • Jagoutz, O., Schmidt, M. W., Enggist, A., et al., 2013. TTG-Type Plutonic Rocks Formed in a Modern Arc Batholith by Hydrous Fractionation in the Lower Arc Crust. Contributions to Mineralogy and Petrology, 166(4): 1099–1118. doi:10.1007/s00410-013-0911-4

    Article  Google Scholar 

  • Jung, S., Masberg, P., Mihm, D., et al., 2009. Partial Melting of Diverse Crustal Sources—Constraints from Sr-Nd-O Isotope Compositions of Quartz Diorite-granodioriteleucogranite Associations (Kaoko Belt, Namibia). Lithos, 111(3/4): 236–251. doi:10.1016/j.lithos.2008.10.010

    Article  Google Scholar 

  • Li, X., Huang, X., Luo, M., et al., 2015. Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun, Northern Tibetan Plateau. Journal of Asian Earth Sciences, 105: 32–47. doi:10.1016/j.jseaes.2015.03.009

    Article  Google Scholar 

  • Liu, B., Ma, C. Q., Zhang, J., et al., 2014. 40Ar-39Ar Age and Geochemistry of Subduction-Related Mafic Dikes in Northern Tibet, China: Petrogenesis and Tectonic Implications. International Geology Review, 56(1): 57–73. doi:10.1080/00206814.2013.818804

    Article  Google Scholar 

  • Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. doi:10.1093/petrology/egp082

    Article  Google Scholar 

  • Ludwig, K. R., 2003. User’s Manual for Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication

    Google Scholar 

  • Ma, C. Q., Zhang, J. Y., Xiong, F. H., et al., 2012. Mantle Evolution from Plate Subduction to Post-Orogenic Extension: Evidence from Permo-Triassic Mafic Dike Swarms in Northern Tibet Plateau. Mineralogical Magazine, 76: 2046

    Google Scholar 

  • Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. doi:10.1130/0016-7606(1989)101〈0635:tdog〉2. 3.co;2

    Article  Google Scholar 

  • Martin, R. F., 2007. Amphiboles in the Igneous Environment. Reviews in Mineralogy and Geochemistry, 67(1): 323–358. doi:10.2138/rmg.2007.67.9

    Article  Google Scholar 

  • Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. doi:10.1016/0012-8252(94)90029-9

    Article  Google Scholar 

  • Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2009. Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 20(2): 241–249. doi:10.1007/s12583-009-0023-2

    Article  Google Scholar 

  • Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471–483. doi:10.1016/s0012-821x(97)00048-4

    Article  Google Scholar 

  • Ostendorf, J., Jung, S., Berndt-Gerdes, J., et al., 2014. Syn-Orogenic High-Temperature Crustal Melting: Geochronological and Nd-Sr-Pb Isotope Constraints from Basement-Derived Granites (Central Damara Orogen, Namibia). Lithos, 192–195: 21–38. doi:10.1016/j.lithos.2014.01.007

    Article  Google Scholar 

  • Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. doi:10.1007/bf00375192

    Article  Google Scholar 

  • Pitcher, W. S., 1987. Granites and yet more Granites Forty Years on. Geologische Rundschau, 76(1): 51–79. doi:10.1007/bf01820573

    Article  Google Scholar 

  • Rapp, R. P., 1995. Amphibole-out Phase Boundary in Partially Melted Metabasalt, Its Control over Liquid Fraction and Composition, and Source Permeability. Journal of Geophysical Research, 100(B8): 15601–15610. doi:10.1029/95jb00913

    Article  Google Scholar 

  • Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931. doi:10.1093/petrology/36.4.891

    Article  Google Scholar 

  • Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1–4): 1–25. doi:10.1016/0301-9268(91)90092-o

    Article  Google Scholar 

  • Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. doi:10.1029/2002tc001466

    Article  Google Scholar 

  • Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 33: 1–64. doi:10.1016/b0-08-043751-6/03016-4

    Article  Google Scholar 

  • Simon, J. I., Weis, D., DePaolo, D. J., et al., 2014. Assimilation of Preexisting Pleistocene Intrusions at Long Valley by Periodic Magma Recharge Accelerates Rhyolite Generation: Rethinking the Remelting Model. Contributions to Mineralogy and Petrology, 167(1): 1–34. doi:10.1007/s00410-013-0955-5

    Article  Google Scholar 

  • Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2004. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635–661. doi:10.1007/s00410-004-0632-9

    Article  Google Scholar 

  • Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311–324.

    Article  Google Scholar 

  • Soesoo, A., 2000. Fractional Crystallization of Mantle-Derived Melts as a Mechanism for some I-Type Granite Petrogenesis: An Example from Lachlan Fold Belt, Australia. Journal of the Geological Society, London, 157(1): 135–149. doi:10.1144/jgs.157.1.135

    Article  Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. doi:10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tiepolo, M., Oberti, R., Zanetti, A., et al., 2007. Trace-Element Partitioning between Amphibole and Silicate Melt. Reviews in Mineralogy and Geochemistry, 67(1): 417–452. doi:10.2138/rmg.2007.67.11

    Article  Google Scholar 

  • Wang, G. C., Wang, Q. H., Jian, P., et al., 2004. Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481–490 (in Chinese with English Abstract)

    Google Scholar 

  • Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369–383. doi:10.1007/bf00320972

    Article  Google Scholar 

  • Wyllie, P. J., Wolf, M. B., 1993. Amphibolite Dehydration-Melting: Sorting out the Solidus. Geological Society, London, Special Publications, 76(1): 405–416. doi:10.1144/gsl.sp.1993.076.01.20

    Article  Google Scholar 

  • Xia, R., Wang, C. M., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93: 193–210. doi:10.1016/j.jseaes.2014.07.013

    Article  Google Scholar 

  • Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2013. Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau. International Geology Review, 55(14): 1817–1834. doi:10.1080/00206814.2013.804683

    Article  Google Scholar 

  • Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011a. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bairiqili Gabbro Pluton in Eastern Kunlun, Northern Qinghai-Tibet Plateau. Geological Bulletin of China, 30(8): 1196–1202 (in Chinese with English Abstract)

    Google Scholar 

  • Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011b. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 27: 3350–3364 (in Chinese with English Abstract)

    Google Scholar 

  • Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3/4): 211–224. doi:10.1007/s00710-011-0187-1

    Article  Google Scholar 

  • Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847–863. doi:10.1144/jgs2013-038

    Article  Google Scholar 

  • Xu, M. J., Li, C., Xu, W., et al., 2014. Petrology, Geochemistry and Geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet: Implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean. Journal of Earth Science, 25(2): 224–240. doi:10.1007/s12583-014-0419-5

    Article  Google Scholar 

  • Xu, Z. Q., Yang, J. S., Jiang, M., et al., 2001. Deep Structure and Lithospheric Shear Faults in the East Kunlun-Qiangtang Region, Northern Tibetan Plateau. Science in China Series D: Earth Sciences, 44(S1): 1–9. doi:10.1007/bf02911965

    Article  Google Scholar 

  • Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1–4): 215–231. doi:10.1016/0040-1951(95)00199-9

    Article  Google Scholar 

  • Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur’ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303–331. doi:10.1007/s12583-009-0027-y

    Article  Google Scholar 

  • Yang, J. S., Xu, Z. Q., Li, H. B., et al., 2005. The Paleo-Tethyan Volcanism and Plate Tectonic Regime in the A’nyemaqen Region of East Kunlun, Northern Tibet Plateau. Acta Petrologica et Mineralogica, 24(5): 369–380 (in Chinese with English Abstract)

    Google Scholar 

  • Yuan, C., Sun, M., Xiao, W. J., et al., 2009. Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 98(6): 1489–1510. doi:10.1007/s00531-008-0335-y

    Article  Google Scholar 

  • Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian–Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892–908. doi:10.1017/s0016756811001142

    Article  Google Scholar 

  • Zhu, Y. H., Zhu, Y. S., Lin, Q. X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth Science––Jorunal of China University of Geosciences, 28(6): 653–659 (in Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqian Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, F., Ma, C., Jiang, H. et al. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. J. Earth Sci. 27, 474–490 (2016). https://doi.org/10.1007/s12583-016-0674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0674-6

Key words

Navigation