Skip to main content
Log in

CMR in Phenotyping the Arrhythmic Substrate

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to explore the role of cardiac magnetic resonance imaging (CMR) in the evaluation of myocardial disorders that can present with significant cardiac arrhythmias. In addition, we explore recent developments in the field of CMR in the evaluation of such conditions, such as T1 and T2 mapping techniques. The importance of CMR as a diagnostic tool in the evaluation of such conditions lies in the fact that in routine clinical practice these conditions are encountered relatively frequently, and often important clinical decisions are made based on the findings of cardiac investigations such as CMR, e.g., decisions surrounding revascularization or implantable cardioverter defibrillator (ICD) therapy. In fact, CMR is now included in many practice guidelines (American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines et al. in J Thorac Cardiovasc Surg, 142(6):e153–203, 2011; Authors/Task Force members et al. in Eur Heart J, 35(39):2733–79, 2014; Epstein et al. in Heart Rhythm, 5(6):934–55, 2008; Maron et al. in J Am Coll Cardiol, 42(9):1687–713, 2003) and is routinely used in the evaluation of cardiomyopathic and ischemic myocardial conditions in many institutions.

Recent Findings

Although late gadolinium enhancement (LGE)-CMR allows a very sensitive and reproducible qualitative assessment of myocardial replacement fibrosis, it is limited in regards to absolute quantification of myocardial fibrosis, and also, the assessment of diffuse fibrosis by CMR can be technically challenging. As a result, in recent years, T1 and T2 mapping techniques have been welcomed by the CMR community, as potential methods of quantitating myocardial fibrosis accurately. Areas of diffuse myocardial fibrosis have greater T1 values (by about 10–20%) than normal tissue, before intravenous Gd is given. Post-Gd administration, T1 values are lower than normal in diffuse myocardial fibrosis. Thus, using this technique maps can be generated that explore the myocardium in detail and can detect early myocardial fibrosis, often before the presence of LGE. T2-weighted CMR identifies myocardial edema before the onset of irreversible ischemic injury and has shown to have value in risk-stratifying patients with chest pain (Eitel and Friedrich in J Cardiovasc Magn Reson, 13:13, 2011). Clinical acceptance of T2-weighted CMR has, however, been limited by well-known technical problems associated with existing techniques. T2 quantification using T2 mapping in the future should overcome these problems. Both T1 and T2 mapping techniques are discussed in further detail below. The assessment of infarct heterogeneity, as measured by peri-infarct zone (PIZ) mass and percentage PIZ (%PIZ), as compared to normal myocardium, is a valuable CMR tool for the assessment of tissue characteristics in the peri-infarct region (Morgan and Kwong in Curr Treat Options Cardiovasc Med, 17(11):53, 2015). It has recently been shown to have useful prognostic information (Watanabe et al. in Circ Cardiovasc Imaging, 7(6):887–94, 2014) in patients with coronary artery disease (CAD) and left ventricular (LV) dysfunction referred for CMR. This is discussed in further detail below. A recent paper by Neilan et al. (JACC Cardiovasc Imaging, 8(4):414–23, (2015)) studied 137 patients who underwent CMR post-resuscitated cardiac arrest and found that in cases where the cause of sudden cardiac death (SCD) was not initially clear, the use of CMR provided a diagnosis in 104 patients (76%). In a multivariable analysis, the strongest predictors of recurrent events were the presence and the extent of LGE (p < 0.001).

Summary

In summary, this paper, through recent evidence and clinical examples, explores those myocardial conditions which pose a significant clinical issue in the form of potentially dangerous cardiac dysrhythmias. Early detection of predictive myocardial characteristics beyond the traditional risk factors has been welcomed by cardiology and cardiac imaging communities. Much work is in progress to make new methods such as T1 and T2 mapping more clinically available and applicable and to ensure that imaging time is not lengthened beyond that which is comfortable for the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Mavrogeni S, Petrou E, Kolovou G, Theodorakis G, Iliodromitis E. Prediction of ventricular arrhythmias using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2013;14(6):518–25. This recent article discusses the use of CMR in evaluation of patients with myocardial conditions associated with ventricular arrhythmias and subsequent adverse outcomes. It highlights the advantages of CMR in the evaluation of patients with CAD, HCM, DCM, ARVC and congenital heart disease.

    Article  PubMed  Google Scholar 

  2. Buxton AE, Lee KL, Hafley GE, Pires LA, Fisher JD, Gold MR, et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: lessons from the MUSTT study. J Am Coll Cardiol. 2007;50(12):1150–7.

    Article  PubMed  Google Scholar 

  3. Kalahasti V, Nambi V, Martin DO, Lam CT, Yamada D, Wilkoff BL, et al. QRS duration and prediction of mortality in patients undergoing risk stratification for ventricular arrhythmias. Am J Cardiol. 2003;92(7):798–803.

    Article  PubMed  Google Scholar 

  4. • Neilan TG, Farhad H, Mayrhofer T, Shah RV, Dodson JA, Abbasi SA, et al. Late gadolinium enhancement among survivors of sudden cardiac arrest. JACC Cardiovasc Imaging. 2015;8(4):414–23. The hypothesis behind this article was based on the fact that myocardial fibrosis is a key substrate for sudden cardiac arrest(SCA), and LGE imaging on CMR is a robust technique for imaging of myocardial fibrosis. Through a retrospective review of all survivors of SCA referred for a CMR study at this institution and subsequent follow-up to assess outcomes, this study showed that among patients with SCA, CMR with contrast identified LGE in 71% and provided a potential arrhythmic substrate in 76% of cases. In a median follow-up of 29 months, both the presence and extent of LGE identified a group at increased risk of future adverse events. This study highlights the additive value of a contrast CMR study in survivors of SCA, especially when an initial workup is unrevealing. Almost 45% of patients in this study either died or had appropriate ICD therapy in follow-up and the presence and the extent of LGE on CMR provided strong and independent prognostic information among this high-risk cohort.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stevenson WG, Epstein LM. Predicting sudden death risk for heart failure patients in the implantable cardioverter-defibrillator age. Circulation. 2003;107(4):514–6.

    Article  PubMed  Google Scholar 

  6. Nazarian S, Bluemke DA, Lardo AC, Zviman MM, Watkins SP, Dickfeld TL, et al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation. 2005;112(18):2821–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stevenson WG, Khan H, Sager P, Saxon LA, Middlekauff HR, Natterson PD, et al. Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation. 1993;88(4 Pt 1):1647–70.

    Article  CAS  PubMed  Google Scholar 

  8. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  CAS  PubMed  Google Scholar 

  9. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    Article  CAS  PubMed  Google Scholar 

  10. de Haas HJ, Arbustini E, Fuster V, Kramer CM, Narula J. Molecular imaging of the cardiac extracellular matrix. Circ Res. 2014;114(5):903–15.

    Article  PubMed  CAS  Google Scholar 

  11. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res. 1988;62(4):757–65.

    Article  CAS  PubMed  Google Scholar 

  12. Borer JS, Truter S, Herrold EM, Falcone DJ, Pena M, Carter JN, et al. Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation. 2002;105(15):1837–42.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka M, Fujiwara H, Onodera T, Wu DJ, Hamashima Y, Kawai C. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br Heart J. 1986;55(6):575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tandri H, Saranathan M, Rodriguez ER, Martinez C, Bomma C, Nasir K, et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol. 2005;45(1):98–103.

    Article  PubMed  Google Scholar 

  15. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977–85.

    Article  PubMed  Google Scholar 

  16. van den Borne SW, Isobe S, Verjans JW, Petrov A, Lovhaug D, Li P, et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol. 2008;52(24):2017–28.

    Article  PubMed  CAS  Google Scholar 

  17. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57(8):891–903.

    Article  PubMed  Google Scholar 

  18. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation. 2004;109(10):1250–8.

    Article  PubMed  Google Scholar 

  19. Bocchi EA, Kalil R, Bacal F, de Lourdes HM, Meneghetti C, Magalhaes A, et al. Magnetic resonance imaging in chronic Chagas' disease: correlation with endomyocardial biopsy findings and gallium-67 cardiac uptake. Echocardiography. 1998;15(3):279–88.

    Article  PubMed  Google Scholar 

  20. Debl K, Djavidani B, Buchner S, Lipke C, Nitz W, Feuerbach S, et al. Delayed hyperenhancement in magnetic resonance imaging of left ventricular hypertrophy caused by aortic stenosis and hypertrophic cardiomyopathy: visualisation of focal fibrosis. Heart. 2006;92(10):1447–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Cobelli F, Pieroni M, Esposito A, Chimenti C, Belloni E, Mellone R, et al. Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol. 2006;47(8):1649–54.

    Article  PubMed  Google Scholar 

  22. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40(12):2156–64.

    Article  PubMed  Google Scholar 

  23. McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  24. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–74.

    Article  PubMed  Google Scholar 

  25. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation. 2002;105(2):224–9.

    Article  PubMed  Google Scholar 

  26. Captur G, Manisty C, Moon JC. Cardiac MRI evaluation of myocardial disease. Heart. 2016;102(18):1429–35.

    Article  PubMed  Google Scholar 

  27. Puntmann VO, Peker E, Chandrashekhar Y, Nagel E. T1 mapping in characterizing myocardial disease: a comprehensive review. Circ Res. 2016;119(2):277–99.

    Article  CAS  PubMed  Google Scholar 

  28. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson. 2013;15:53.

    Article  Google Scholar 

  29. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6.

    Article  PubMed  Google Scholar 

  30. Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Robbers LF, Baars EN, Brouwer WP, Beek AM, Hofman MB, Niessen HW, et al. T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging. 2012;5(3):423–6.

    Article  PubMed  Google Scholar 

  32. Eitel I, Friedrich MG. T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson. 2011;13:13.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao P, Yee R, Gula L, Krahn AD, Skanes A, Leong-Sit P, et al. Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circ Cardiovasc Imaging. 2012;5(4):448–56.

    Article  PubMed  Google Scholar 

  34. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol. 2005;45(7):1104–8.

    Article  PubMed  Google Scholar 

  35. Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation. 2007;115(15):2006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Haan S, Meijers TA, Knaapen P, Beek AM, van Rossum AC, Allaart CP. Scar size and characteristics assessed by CMR predict ventricular arrhythmias in ischaemic cardiomyopathy: comparison of previously validated models. Heart. 2011;97(23):1951–6.

    Article  PubMed  Google Scholar 

  37. Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, et al. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging. 2009;2(3):183–90.

    Article  PubMed  Google Scholar 

  38. Klem I, Weinsaft JW, Bahnson TD, Hegland D, Kim HW, Hayes B, et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J Am Coll Cardiol. 2012;60(5):408–20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu KC, Gerstenblith G, Guallar E, Marine JE, Dalal D, Cheng A, et al. Combined cardiac magnetic resonance imaging and C-reactive protein levels identify a cohort at low risk for defibrillator firings and death. Circ Cardiovasc Imaging. 2012;5(2):178–86.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haugaa KH, Smedsrud MK, Steen T, Kongsgaard E, Loennechen JP, Skjaerpe T, et al. Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging. 2010;3(3):247–56.

    Article  PubMed  Google Scholar 

  41. de Bakker JM, van Capelle FJ, Janse MJ, Tasseron S, Vermeulen JT, de Jonge N, et al. Slow conduction in the infarcted human heart. 'Zigzag' course of activation. Circulation. 1993;88(3):915–26.

    Article  PubMed  Google Scholar 

  42. Morgan RB, Kwong R. Role of cardiac MRI in the assessment of cardiomyopathy. Curr Treat Options Cardiovasc Med. 2015;17(11):53.

    Article  PubMed  Google Scholar 

  43. • Watanabe E, Abbasi SA, Heydari B, Coelho-Filho OR, Shah R, Neilan TG, et al. Infarct tissue heterogeneity by contrast-enhanced magnetic resonance imaging is a novel predictor of mortality in patients with chronic coronary artery disease and left ventricular dysfunction. Circ Cardiovasc Imaging. 2014;7(6):887–94. This study tests the hypothesis that infarct heterogeneity by cardiac magnetic resonance is associated with mortality beyond LV ejection fraction (LVEF) in patients with CAD and LV dysfunction. It also examines the association between infarct heterogeneity and mortality in those with LVEF >35%. CMR infarct heterogeneity was found to have a strong association with mortality independent of LVEF in patients with CAD and LV dysfunction, particularly in patients with mild or moderate LV dysfunction. Prior studies have proposed that regions of infarct heterogeneity assessed by CMR LGE imaging represent an admixture of viable myocardium and fibrosis and form myocardial substrates for significant ventricular arrhythmias. This study adds to this existing evidence by demonstrating a significant association of CMR infarct heterogeneity, the peri-infarct zone, with death, or death or appropriate implantable-cardioverter defibrillator (ICD) discharge. After adjusting for common clinical markers of SCD risk, this prognostic differentiation was observed to be specifically robust in patients with left ventricular ejection fraction >35%. These observations further support the need for prospective trials incorporating infarct tissue quantification in the management strategy of patients with chronic myocardial infarction using invasive devices or therapies. It also supports the hypothesis of assessing infarct heterogeneity to reduce the overall burden of sudden death from ischemic heart disease by risk stratifying patients with mild to moderate left ventricular dysfunction, rather than just focusing on those with severe resultant LV dysfunction, as has often been the case in the past.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP, et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med. 2007;58(1):34–40.

    Article  PubMed  Google Scholar 

  45. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012;14:63.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schalla S, Bekkers SC, Dennert R, van Suylen RJ, Waltenberger J, Leiner T, et al. Replacement and reactive myocardial fibrosis in idiopathic dilated cardiomyopathy: comparison of magnetic resonance imaging with right ventricular biopsy. Eur J Heart Fail. 2010;12(3):227–31.

    Article  PubMed  Google Scholar 

  48. White JA, Fine NM, Gula L, Yee R, Skanes A, Klein G, et al. Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging. 2012;5(1):12–20.

    Article  PubMed  Google Scholar 

  49. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol. 2009;53(17):1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mendes LA, Dec GW, Picard MH, Palacios IF, Newell J, Davidoff R. Right ventricular dysfunction: an independent predictor of adverse outcome in patients with myocarditis. Am Heart J. 1994;128(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  51. Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol. 2012;59(18):1604–15.

    Article  PubMed  Google Scholar 

  52. Drago F, Mazza A, Gagliardi MG, Bevilacqua M, Di Renzi P, Calzolari A, et al. Tachycardias in children originating in the right ventricular outflow tract: lack of clinical features predicting the presence and severity of the histopathological substrate. Cardiol Young. 1999;9(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  53. Mello RP, Szarf G, Schvartzman PR, Nakano EM, Espinosa MM, Szejnfeld D, et al. Delayed enhancement cardiac magnetic resonance imaging can identify the risk for ventricular tachycardia in chronic Chagas' heart disease. Arq Bras Cardiol. 2012;98(5):421–30.

    Article  PubMed  Google Scholar 

  54. Betensky BP, Tschabrunn CM, Zado ES, Goldberg LR, Marchlinski FE, Garcia FC, et al. Long-term follow-up of patients with cardiac sarcoidosis and implantable cardioverter-defibrillators. Heart Rhythm. 2012;9(6):884–91.

    Article  PubMed  Google Scholar 

  55. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11(7):1305–23.

    Article  PubMed  Google Scholar 

  56. Greulich S, Deluigi CC, Gloekler S, Wahl A, Zurn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6(4):501–11.

    Article  PubMed  Google Scholar 

  57. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120(20):1969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aljaroudi WA, Flamm SD, Saliba W, Wilkoff BL, Kwon D. Role of CMR imaging in risk stratification for sudden cardiac death. JACC Cardiovasc Imaging. 2013;6(3):392–406.

    Article  PubMed  Google Scholar 

  59. • Nadel J, Lancefield T, Voskoboinik A, Taylor AJ. Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Heart J Cardiovasc Imaging. 2015;16(6):634–41. This study assessed the utility of CMR in the prediction of adverse outcomes in cardiac sarcoidosis. CMR identified 32 of 106 (30%) CMR patients with biopsy proven extracardiac sarcoidosis as having cardiac involvement. At a mean follow-up time of 36.8 ± 20.5 months, patients with cardiac sarcoidosis had a higher rate of sudden cardiac death (SCD) and ventricular tachyarrhythmia—compared with those with only extracardiac disease. In addition, there was a higher rate of SCD or ICD-aborted SCD in patients with cardiac sarcoidosis vs. those without. This study also showed that in patients with cardiac sarcoidosis, the rate of SCD was lower in those with an ICD compared with those without.

    PubMed  Google Scholar 

  60. Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: a review. J Am Heart Assoc. 2012;1(2):e000364.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008;51(10):1022–30.

    Article  PubMed  Google Scholar 

  62. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2(12):1369–77.

    Article  PubMed  Google Scholar 

  63. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3(2):155–64.

    Article  PubMed  Google Scholar 

  64. Mongeon FP, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging. 2012;5(9):897–907.

    Article  PubMed  PubMed Central  Google Scholar 

  65. • Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36(4):244–51. The aim of this study was to assess the prognostic value of myocardial pre-contrast T1 and extracellular volume (ECV) in systemic amyloid light-chain (AL) amyloidosis using CMR T1 mapping. This study demonstrated that ECV and native myocardial T1 as measured by the newer T1 mapping techniques, both correlate with current markers of disease severity in cardiac AL amyloidosis(serum biomarkers NT-proBNP and Troponin T). ECV and native T1 were also found to be predictors of mortality in AL amyloidosis. This study highlights how ECV adds incremental value over and above existing clinical markers when risk-stratifying patients with AL amyloidosis. The simpler pre-contrast myocardial T1 technique used in this study does not require a contrast agent and shows promise, particularly as up to one third of patients with systemic AL amyloidosis have significant renal impairment at presentation.

    Article  PubMed  Google Scholar 

  66. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.

    Article  CAS  PubMed  Google Scholar 

  67. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54.

    Article  PubMed  Google Scholar 

  68. Authors/Task Force members, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79.

    Article  Google Scholar 

  69. O'Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014;35(30):2010–20.

    Article  PubMed  Google Scholar 

  70. Rudolph A, Abdel-Aty H, Bohl S, Boye P, Zagrosek A, Dietz R, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol. 2009;53(3):284–91.

    Article  PubMed  Google Scholar 

  71. Prinz C, Schwarz M, Ilic I, Laser KT, Lehmann R, Prinz EM, et al. Myocardial fibrosis severity on cardiac magnetic resonance imaging predicts sustained arrhythmic events in hypertrophic cardiomyopathy. Can J Cardiol. 2013;29(3):358–63.

    Article  PubMed  Google Scholar 

  72. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):875–87.

    Article  PubMed  Google Scholar 

  73. O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):867–74.

    Article  PubMed  Google Scholar 

  74. Rubinshtein R, Glockner JF, Ommen SR, Araoz PA, Ackerman MJ, Sorajja P, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3(1):51–8.

    Article  PubMed  Google Scholar 

  75. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(14):1369–74.

    Article  PubMed  Google Scholar 

  76. Maron MS, Appelbaum E, Harrigan CJ, Buros J, Gibson CM, Hanna C, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1(3):184–91.

    Article  PubMed  Google Scholar 

  77. Chiribiri A, Conte MR, Bonamini R, Gaita F, Nagel E. Late gadolinium enhancement and sudden cardiac death in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2011;57(12):1402; author reply −3.

  78. American College of Cardiology Foundation/American Heart Association Task Force on P, American Association for Thoracic S, American Society of E, American Society of Nuclear C, Heart Failure Society of A, Heart Rhythm S, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2011;142(6):e153–203.

    Article  Google Scholar 

  79. Captur G, Lopes LR, Patel V, Li C, Bassett P, Syrris P, et al. Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ Cardiovasc Genet. 2014;7(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  80. Maron MS, Olivotto I, Harrigan C, Appelbaum E, Gibson CM, Lesser JR, et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation. 2011;124(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  81. Moon JC, McKenna WJ. Myocardial crypts: a prephenotypic marker of hypertrophic cardiomyopathy? Circ Cardiovasc Imaging. 2012;5(4):431–2.

    Article  PubMed  Google Scholar 

  82. Christiaans I, van Engelen K, van Langen IM, Birnie E, Bonsel GJ, Elliott PM, et al. Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace. 2010;12(3):313–21.

    Article  PubMed  Google Scholar 

  83. Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM, et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol. 2011;57(7):821–8.

    Article  PubMed  Google Scholar 

  84. Wu KC, Weiss RG, Thiemann DR, Kitagawa K, Schmidt A, Dalal D, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol. 2008;51(25):2414–21.

    Article  PubMed  PubMed Central  Google Scholar 

  85. White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 2013;6(9):955–62.

    Article  PubMed  Google Scholar 

  86. Goto YI, Ishida M, Nakamori S, Nagata M, Ichikawa Y, Kitagawa K, Dohi K, Ito M, Sakuma H. Native T1 mapping in patients with idiopathic dilated cardiomyopathy for the assessment of diffuse myocardial fibrosis: validation against histologic endomyocardial biopsy. J Cardiovasc Magn Reson. 2015;201517(Suppl 1):O84.

    Article  Google Scholar 

  87. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(6):726–33.

    Article  PubMed  Google Scholar 

  88. • aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging. 2015;16(2):210–6. The aim of this study was to determine the value of ECV for the non-invasive assessment of diffuse myocardial fibrosis in different stages of systolic left ventricular (LV) dysfunction in dilated cardiomyopathy (DCM) in comparison with endomyocardial biopsy. This study is important because earlier stages of DCM with mild LV functional impairment had not yet been investigated. This study showed that the ECV between 'early DCM' (EF 45-55%), 'DCM' (EF <45%), and controls differed significantly. Overall the authors concluded that CMR-based assessment of ECV may have the potential to serve as a non-invasive tool for the quantification of diffuse myocardial fibrosis in order to monitor therapy response and aid risk stratification in different stages of DCM.

    Article  PubMed  Google Scholar 

  89. te Riele AS, Tandri H, Bluemke DA. Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson. 2014;16:50.

    Article  Google Scholar 

  90. Corrado D, Thiene G, Nava A, Rossi L, Pennelli N. Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med. 1990;89(5):588–96.

    Article  CAS  PubMed  Google Scholar 

  91. Dalal D, Nasir K, Bomma C, Prakasa K, Tandri H, Piccini J, et al. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation. 2005;112(25):3823–32.

    Article  PubMed  Google Scholar 

  92. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010;31(7):806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982;65(2):384–98.

    Article  CAS  PubMed  Google Scholar 

  94. Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation. 1996;94(5):983–91.

    Article  CAS  PubMed  Google Scholar 

  95. Te Riele AS, James CA, Philips B, Rastegar N, Bhonsale A, Groeneweg JA, et al. Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. J Cardiovasc Electrophysiol. 2013;24(12):1311–20.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jain A, Shehata ML, Stuber M, Berkowitz SJ, Calkins H, Lima JA, et al. Prevalence of left ventricular regional dysfunction in arrhythmogenic right ventricular dysplasia: a tagged MRI study. Circ Cardiovasc Imaging. 2010;3(3):290–7.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation. 2007;115(13):1710–20.

    Article  PubMed  Google Scholar 

  98. Sen-Chowdhry S, Syrris P, Prasad SK, Hughes SE, Merrifield R, Ward D, et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol. 2008;52(25):2175–87.

    Article  PubMed  Google Scholar 

  99. Igual B, Zorio E, Maceira A, Estornell J, Lopez-Lereu MP, Monmeneu JV, et al. Arrhythmogenic cardiomyopathy. Patterns of ventricular involvement using cardiac magnetic resonance. Rev Esp Cardiol. 2011;64(12):1114–22.

    Article  PubMed  Google Scholar 

  100. Tandri H, Calkins H, Nasir K, Bomma C, Castillo E, Rutberg J, et al. Magnetic resonance imaging findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia. J Cardiovasc Electrophysiol. 2003;14(5):476–82.

    Article  PubMed  Google Scholar 

  101. Pfluger HB, Phrommintikul A, Mariani JA, Cherayath JG, Taylor AJ. Utility of myocardial fibrosis and fatty infiltration detected by cardiac magnetic resonance imaging in the diagnosis of arrhythmogenic right ventricular dysplasia—a single centre experience. Heart Lung Circ. 2008;17(6):478–83.

    Article  PubMed  Google Scholar 

  102. Marra MP, Leoni L, Bauce B, Corbetti F, Zorzi A, Migliore F, et al. Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy: comparison of 3D standard electroanatomical voltage mapping and contrast-enhanced cardiac magnetic resonance. Circ Arrhythm Electrophysiol. 2012;5(1):91–100.

    Article  PubMed  Google Scholar 

  103. Santangeli P, Pieroni M, Dello Russo A, Casella M, Pelargonio G, Macchione A, et al. Noninvasive diagnosis of electroanatomic abnormalities in arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3(6):632–8.

    Article  PubMed  Google Scholar 

  104. Reynen K, Bachmann K, Singer H. Spongy myocardium. Cardiology. 1997;88(6):601–2.

    Article  CAS  PubMed  Google Scholar 

  105. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36(2):493–500.

    Article  CAS  PubMed  Google Scholar 

  106. Ichida F, Hamamichi Y, Miyawaki T, Ono Y, Kamiya T, Akagi T, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol. 1999;34(1):233–40.

    Article  CAS  PubMed  Google Scholar 

  107. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82(2):507–13.

    Article  CAS  PubMed  Google Scholar 

  108. Shemisa K, Li J, Tam M, Barcena J. Left ventricular noncompaction cardiomyopathy. Cardiovasc Diagn Ther. 2013;3(3):170–5.

    PubMed  PubMed Central  Google Scholar 

  109. Murphy RT, Thaman R, Blanes JG, Ward D, Sevdalis E, Papra E, et al. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J. 2005;26(2):187–92.

    Article  PubMed  Google Scholar 

  110. Epstein AE, Dimarco JP, Ellenbogen KA, Estes 3rd NA, Freedman RA, Gettes LS, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary. Heart Rhythm. 2008;5(6):934–55.

    Article  PubMed  Google Scholar 

  111. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498–506.

    Article  CAS  PubMed  Google Scholar 

  112. Khurram IM, Habibi M, Gucuk Ipek E, Chrispin J, Yang E, Fukumoto K, et al. Left atrial LGE and arrhythmia recurrence following pulmonary vein isolation for paroxysmal and persistent AF. JACC Cardiovasc Imaging. 2016;9(2):142–8.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Peters DC, Wylie JV, Hauser TH, Kissinger KV, Botnar RM, Essebag V, et al. Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology. 2007;243(3):690–5.

    Article  PubMed  Google Scholar 

  114. McGann CJ, Kholmovski EG, Oakes RS, Blauer JJ, Daccarett M, Segerson N, et al. New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J Am Coll Cardiol. 2008;52(15):1263–71.

    Article  PubMed  Google Scholar 

  115. Peters DC, Wylie JV, Hauser TH, Nezafat R, Han Y, Woo JJ, et al. Recurrence of atrial fibrillation correlates with the extent of post-procedural late gadolinium enhancement: a pilot study. JACC Cardiovasc Imaging. 2009;2(3):308–16.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dodson JA, Neilan TG, Shah RV, Farhad H, Blankstein R, Steigner M, et al. Left atrial passive emptying function determined by cardiac magnetic resonance predicts atrial fibrillation recurrence after pulmonary vein isolation. Circ Cardiovasc Imaging. 2014;7(4):586–92.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Y. Kwong.

Ethics declarations

Conflict of Interest

Both authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, R.B., Kwong, R.Y. CMR in Phenotyping the Arrhythmic Substrate. Curr Cardiovasc Imaging Rep 10, 19 (2017). https://doi.org/10.1007/s12410-017-9416-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9416-2

Keywords

Navigation