Skip to main content

Advertisement

Log in

Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

The phenotypic axis of invasion and proliferation in malignant glioma cells is a well-documented phenomenon. Invasive glioma cells exhibit a decreased proliferation rate and a resistance to apoptosis, and invasive tumor cells dispersed in brain subsequently revert to proliferation and contribute to secondary tumor formation. One miRNA can affect dozens of mRNAs, and some miRNAs are potent oncogenes. Multiple miRNAs are implicated in glioma malignancy, and several of which have been identified to regulate tumor cell motility and division. Using rat 9 L gliosarcoma and human U87 glioblastoma cell lines, we investigated miRNAs associated with the switch between glioma cell invasion and proliferation. Using micro-dissection of 9 L glioma tumor xenografts in rat brain, we identified disparate expression of miR-9 between cells within the periphery of the primary tumor, and those comprising tumor islets within the invasive zone. Modifying miR-9 expression in in vitro assays, we report that miR-9 controls the axis of glioma cell invasion/proliferation, and that its contribution to invasion or proliferation is biphasic and dependent upon local tumor cell density. In addition, immunohistochemistry revealed elevated hypoxia inducible factor 1 alpha (HIF-1α) in the invasive zone as compared to the primary tumor periphery. We also found that hypoxia promotes miR-9 expression in glioma cells. Based upon these findings, we propose a hypothesis for the contribution of miR-9 to the dynamics glioma invasion and satellite tumor formation in brain adjacent to tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dhruv HD, McDonough Winslow WS, Armstrong B, Tuncali S, Eschbacher J, Kislin K, Loftus JC, Tran NL, Berens ME (2013) Reciprocal activation of transcription factors underlies the dichotomy between proliferation and invasion of glioma cells. PLoS One 8(8):e72134. doi:10.1371/journal.pone.0072134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME (1996) Dichotomy of astrocytoma migration and proliferation. Int J Cancer 67(2):275–282

    Article  CAS  PubMed  Google Scholar 

  3. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21(8):1624–1636

    Article  CAS  PubMed  Google Scholar 

  4. Hassaneen W, Levine NB, Suki D, Salaskar AL, de Moura Lima A, McCutcheon IE, Prabhu SS, Lang FF, DeMonte F, Rao G, Weinberg JS, Wildrick DM, Aldape KD, Sawaya R (2011) Multiple craniotomies in the management of multifocal and multicentric glioblastoma. clinical article. J Neurosurg 114(3):576–584. doi:10.3171/2010.6.JNS091326

    Article  PubMed  Google Scholar 

  5. Friedman RC, Burge CB (2014) MicroRNA target finding by comparative genomics. Methods Mol Biol 1097:457–476. doi:10.1007/978-1-62703-709-9_21

    Article  CAS  PubMed  Google Scholar 

  6. Fabbri M, Croce CM, Calin GA (2008) MicroRNAs. Cancer J 14(1):1–6. doi:10.1097/PPO.0b013e318164145e

    Article  CAS  PubMed  Google Scholar 

  7. Nicoloso MS, Calin GA (2008) MicroRNA involvement in brain tumors: from bench to bedside. Brain Pathol 18(1):122–129. doi:10.1111/j.1750-3639.2007.00119.x

    Article  CAS  PubMed  Google Scholar 

  8. Silber J, James CD, Hodgson JG (2009) microRNAs in gliomas: small regulators of a big problem. Neruomol Med 11(3):208–222. doi:10.1007/s12017-009-8087-9

    Article  CAS  Google Scholar 

  9. Areeb Z, Stylli SS, Koldej R, Ritchie DS, Siegal T, Morokoff AP, Kaye AH, Luwor RB (2015) MicroRNA as potential biomarkers in glioblastoma. J Neuro-Oncol 125(2):237–248. doi:10.1007/s11060-015-1912-0

    Article  CAS  Google Scholar 

  10. Bradley BS, Loftus JC, Mielke CJ, Dinu V (2014) Differential expression of microRNAs as predictors of glioblastoma phenotypes. BMC Bioinformatics 15:21. doi:10.1186/1471-2105-15-21

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shan F, Li J, Huang QY (2014) HIF-1 alpha-induced up-regulation of mir-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia. J Cell Physiol 229(10):1511–1520. doi:10.1002/jcp.24593

    Article  CAS  PubMed  Google Scholar 

  12. Katakowski M, Zheng X, Jiang F, Rogers T, Szalad A, Chopp M (2010) MiR-146b-5p suppresses egfr expression and reduces in vitro migration and invasion of glioma. Cancer Investig 28(10):1024–1030. doi:10.3109/07357907.2010.512596

    Article  CAS  Google Scholar 

  13. Tan X, Wang S, Yang B, Zhu L, Yin B, Chao T, Zhao J, Yuan J, Qiang B, Peng X (2012) The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells. PLoS One 7(11):e49570. doi:10.1371/journal.pone.0049570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu Z, Wang L, Li G, Liu H, Fan F, Li Z, Li Y, Gao G (2013) Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol Cell Biochem 384(1–2):263–268. doi:10.1007/s11010-013-1805-5

    CAS  PubMed  Google Scholar 

  15. Neildez-Nguyen TM, Parisot A, Vignal C, Rameau P, Stockholm D, Picot J, Allo V, Le Bec C, Laplace C, Paldi A (2008) Epigenetic gene expression noise and phenotypic diversification of clonal cell populations. Differentiation 76(1):33–40. doi:10.1111/j.1432-0436.2007.00219.x

    Article  CAS  PubMed  Google Scholar 

  16. Pham K, Chauviere A, Hatzikirou H, Li X, Byrne HM, Cristini V, Lowengrub J (2012) Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy. J Biol Dyn 6(Suppl 1):54–71

    Article  PubMed  Google Scholar 

  17. Vultur A, Cao J, Arulanandam R, Turkson J, Jove R, Greer P, Craig A, Elliott B, Raptis L (2004) Cell-to-cell adhesion modulates stat3 activity in normal and breast carcinoma cells. Oncogene 23(15):2600–2616

    Article  CAS  PubMed  Google Scholar 

  18. Batt DB, Roberts TM (1998) Cell density modulates protein-tyrosine phosphorylation. J Biol Chem 273(6):3408–3414

    Article  CAS  PubMed  Google Scholar 

  19. Azzalin A, Moretti E, Arbustini E, Magrassi L (2014) Cell density modulates SHC3 expression and survival of human glioblastoma cells through fak activation. J Neuro-Oncol 120(2):245–256. doi:10.1007/s11060-014-1551-x

    Article  CAS  Google Scholar 

  20. Lindemann C, Hackmann O, Delic S, Schmidt N, Reifenberger G, Riemenschneider MJ (2011) SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation. Acta Neuropathol 122(2):241–251. doi:10.1007/s00401-011-0832-0

    Article  CAS  PubMed  Google Scholar 

  21. Deisboeck TS, Mansury Y, Guiot C, Degiorgis PG, Delsanto PP (2005) Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion. Med Hypotheses 65(4):785–790

    Article  PubMed  Google Scholar 

  22. Horing E, Harter PN, Seznec J, Schittenhelm J, Buhring HJ, Bhattacharyya S, von Hattingen E, Zachskorn C, Mittelbronn M, Naumann U (2012) The “go or grow” potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic Stress. Acta Neuropathol 124(1):83–97. doi:10.1007/s00401-011-0940-x

    Article  PubMed  Google Scholar 

  23. Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, Balasubramaniyan V, Wagemakers M, den Dunnen WF, Kruyt FA (2015) hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Lett 359(1):107–116. doi:10.1016/j.canlet.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  24. Zheng X, Jiang F, Katakowski M, Kalkanis SN, Hong X, Zhang X, Zhang ZG, Yang H, Chopp M (2007) Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci 98(5):674–684. doi:10.1111/j.1349-7006.2007.00440.x

    Article  CAS  PubMed  Google Scholar 

  25. Khain E, Katakowski M, Hopkins S, Szalad A, Zheng X, Jiang F, Chopp M (2011) Collective behavior of brain tumor cells: the role of hypoxia. Phys Rev E Stat Nonlinear Soft Matter Phys 83(3 Pt 1):031920. doi:10.1103/PhysRevE.83.031920

    Article  Google Scholar 

  26. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology 7(2):134–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Unwith S, Zhao H, Hennah L, Ma D (2015) The potential role of HIF on tumour progression and dissemination. Int J Cancer 136(11):2491–2503. doi:10.1002/ijc.28889

    Article  CAS  PubMed  Google Scholar 

  28. Liu S, Kumar SM, Lu H, Liu A, Yang R, Pushparajan A, Guo W, Xu X (2012) MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. J Pathol 226(1):61–72

    Article  CAS  PubMed  Google Scholar 

  29. Liu M, Zhu H, Yang S, Wang Z, Bai J, Xu N (2013) C-Myc suppressed E-cadherin through miR-9 at the post-transcriptional level. Cell Biol Int 37(3):197–202. doi:10.1002/cbin.10039

    Article  CAS  PubMed  Google Scholar 

  30. MH L, Huang CC, Pan MR, Chen HH, Hung WC (2012) Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 18(23):6416–6425. doi:10.1158/1078-0432.CCR-12-0832

    Article  Google Scholar 

  31. Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L, Li J, Wang H, Qin Y, Zeng M, Guan XY, Li Y (2014) MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget 5(22):11669–11680. doi:10.18632/oncotarget.2581

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khain E, Schneider-Mizell CM, Nowicki MO, Chiocca EA, Lawler SE, Sander LM (2009) Pattern formation of glioma cells: effects of adhesion. Epl 88(2). doi:10.1209/0295-5075/88/28006

  33. Leontieva OV, Demidenko ZN, Blagosklonny MV (2014) Contact inhibition and high cell density deactivate the mammalian target of rapamycin pathway, thus suppressing the senescence program. Proc Natl Acad Sci U S A 111(24):8832–8837. doi:10.1073/pnas.1405723111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, Huang L, Ratliff M, Karimian Jazi K, Kurz FT, Schmenger T, Lemke D, Gommel M, Pauli M, Liao Y, Haring P, Pusch S, Herl V, Steinhauser C, Krunic D, Jarahian M, Miletic H, Berghoff AS, Griesbeck O, Kalamakis G, Garaschuk O, Preusser M, Weiss S, Liu H, Heiland S, Platten M, Huber PE, Kuner T, von Deimling A, Wick W, Winkler F (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98. doi:10.1038/nature16071

    CAS  PubMed  Google Scholar 

  35. Lewis-Tuffin LJ, Rodriguez F, Giannini C, Scheithauer B, Necela BM, Sarkaria JN, Anastasiadis PZ (2010) Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One 5(10):e13665

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hong X, Sin WC, Harris AL, Naus CC (2015) Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6(17):15566–15577. doi:10.18632/oncotarget.3904

    Article  PubMed  PubMed Central  Google Scholar 

  37. Appolloni I, Barilari M, Caviglia S, Gambini E, Reisoli E, Malatesta P (2015) A cadherin switch underlies malignancy in high-grade gliomas. Oncogene 34(15):1991–2002

    Article  CAS  PubMed  Google Scholar 

  38. Bates DC, Sin WC, Aftab Q, Naus CC (2007) Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55(15):1554–1564. doi:10.1002/glia.20569

    Article  PubMed  Google Scholar 

  39. Zhang W, Nwagwu C, Le DM, Yong VW, Song H, Couldwell WT (2003) Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J Neurosurg 99(6):1039–1046

    Article  CAS  PubMed  Google Scholar 

  40. Sin WC, Crespin S, Mesnil M (2012) Opposing roles of connexin43 in glioma progression. Biochim Biophys Acta 1818(8):2058–2067

    Article  CAS  PubMed  Google Scholar 

  41. SC Y, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, SL X, Xin YH, Yao XH, Chen JH, Chu WH, Sun W, Wang B, Wang JM, Zhang X, Bian XW (2012) Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells 30(2):108–120. doi:10.1002/stem.1685

    Article  Google Scholar 

  42. Soares AR, Martins-Marques T, Ribeiro-Rodrigues T, Ferreira JV, Catarino S, Pinho MJ, Zuzarte M, Isabel Anjo S, Manadas B, PGS J, Pereira P, Girao H (2015) Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Report 5:13243. doi:10.1038/srep13243

    Article  CAS  Google Scholar 

  43. Katakowski M, Buller B, Wang X, Rogers T, Chopp M (2010) Functional microRNA is transferred between glioma cells. Cancer Res 70(21):8259–8263. doi:10.1158/0008-5472.CAN-10-0604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okoshi R, Ando K, Suenaga Y, Sang M, Kubo N, Kizaki H, Nakagawara A, Ozaki T (2009) Transcriptional regulation of tumor suppressor p53 by cAMP-responsive element-binding protein/AMP-activated protein kinase complex in response to glucose deprivation. Genes Cells 14(12):1429–1440. doi:10.1111/j.1365-2443.2009.01359.x

    Article  CAS  PubMed  Google Scholar 

  45. Fusco S, Leone L, Barbati SA, Samengo D, Piacentini R, Maulucci G, Toietta G, Spinelli M, McBurney M, Pani G, Grassi C (2016) A CREB-Sirt1-Hes1 circuitry mediates neural stem cell response to glucose availability. Cell Rep 14:1195–1205

    Article  CAS  PubMed  Google Scholar 

  46. Friedl P, Sahai E, Weiss S, Yamada KM (2012) New dimensions in cell migration. Nat Rev Mol Cell Biol 13(11):743–747. doi:10.1038/nrm3459

    Article  CAS  PubMed  Google Scholar 

  47. Pathak A, Kumar S (2011) Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol (Camb) 3(4):267–278. doi:10.1039/c0ib00095g

    Article  CAS  Google Scholar 

  48. Faurobert E, Bouin AP, Albiges-Rizo C (2015) Microenvironment, tumor cell plasticity, and cancer. Curr Opin Oncol 27(1):64–70. doi:10.1097/CCO.0000000000000154

    Article  CAS  PubMed  Google Scholar 

  49. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stuhler K, Meyer HE, Reifenberger G (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20(3):539–550. doi:10.1111/j.1750-3639.2009.00328.x

    Article  CAS  PubMed  Google Scholar 

  50. Henriksen M, Johnsen KB, Olesen P, Pilgaard L, Duroux M (2014) MicroRNA expression signatures and their correlation with clinicopathological features in glioblastoma multiforme. Neruomol Med 16(3):565–577. doi:10.1007/s12017-014-8309-7

    Article  CAS  Google Scholar 

  51. Haapa-Paananen S, Chen P, Hellstrom K, Kohonen P, Hautaniemi S, Kallioniemi O, Perala M (2013) Functional profiling of precursor micrornas identifies MicroRNAs essential for glioma proliferation. PLoS One 8(4):e60930. doi:10.1371/journal.pone.0060930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Godlewski J, Bronisz A, Nowicki MO, Chiocca EA, Lawler S (2010) Microrna-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9(14):2742–2748

    Article  CAS  PubMed  Google Scholar 

  53. Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q (2013) MicroRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin d1 and Ets1. PLoS One 8(1):e55719. doi:10.1371/journal.pone.0055719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun Z, Han Q, Zhou N, Wang S, Lu S, Bai C, Zhao RC (2013) MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol 7(5):884–894. doi:10.1016/j.molonc.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  55. Yao PS, Kang DZ, Wang XF, Lin RY, Ye ZC (2015) Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line. In Vitro Cell Dev Biol Anim 51(4):345–352

    Article  CAS  PubMed  Google Scholar 

  56. Nilsson GM, Akhtar N, Kannius-Janson M, Baeckstrom D (2014) Loss of E-cadherin expression is not a prerequisite for c-erbB2-induced epithelial-mesenchymal transition. Int J Oncol 45(1):82–94

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Morgenstern K, Hanson-Painton O, Wang BL, De Bault L (1992) Density-dependent regulation of cell surface gamma-glutamyl transpeptidase in cultured glial cells. J Cell Physiol 150(1):104–115

    Article  CAS  PubMed  Google Scholar 

  58. Kathagen A, Schulte A, Balcke G, Phillips HS, Martens T, Matschke J, Gunther HS, Soriano R, Modrusan Z, Sandmann T, Kuhl C, Tissier A, Holz M, Krawinkel LA, Glatzel M, Westphal M, Lamszus K (2013) Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 126(5):763–780. doi:10.1007/s00401-013-1173-y

    Article  CAS  PubMed  Google Scholar 

  59. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64(3):920–927

    Article  CAS  PubMed  Google Scholar 

  60. Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539

    Article  PubMed  Google Scholar 

  61. Xie Q, Mittal S, Berens ME (2014) Targeting adaptive glioblastoma: an overview of proliferation and invasion. Neuro-Oncology 16(12):1575–1584. doi:10.1093/neuonc/nou147

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fujiwara S, Nakagawa K, Harada H, Nagato S, Furukawa K, Teraoka M, Seno T, Oka K, Iwata S, Ohnishi T (2007) Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas. Int J Oncol 30(4):793–802

    CAS  PubMed  Google Scholar 

  63. Wang H, Zhang W, Zuo Y, Ding M, Ke C, Yan R, Zhan H, Liu J, Wang J (2015) miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer. Tumour Biol 36(12):9631–9640

    Article  CAS  PubMed  Google Scholar 

  64. Venur VA, Peereboom DM, Ahluwalia MS (2015) Current medical treatment of glioblastoma. Cancer Treat Res 163:103–115

    Article  PubMed  Google Scholar 

  65. Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW (2015) Mechanisms regulating glioma invasion. Cancer Lett 362(1):1–7. doi:10.1016/j.canlet.2015.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Xuguang Zheng for and Dr. Ben Buller for assistance and helpful discussions in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Katakowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katakowski, M., Charteris, N., Chopp, M. et al. Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9. Cancer Microenvironment 9, 149–159 (2016). https://doi.org/10.1007/s12307-016-0190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-016-0190-5

Keywords

Navigation