Skip to main content

Advertisement

Log in

Exogenous application of glutathione enhanced growth, nutritional orchestration and physiochemical characteristics of Brassica oleracea L. under lead stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

A major obstacle to agricultural production and yield quality is heavy metal contamination of the soil and water, which leads to lower productivity and quality of crops. The situation has significantly worsened as a result of the growing population and subsequent rise in food consumption. The growth of nutrient-rich plants is hampered by lead (Pb) toxicity in the soil. Brassica oleracea L. (broccoli) is a prominent vegetable crop in the Brassicaceae family subjected to a number of biotic and abiotic stresses that dramatically lower crop yields. Seed priming is a novel, practicable, and cost-effective method that can improve various abiotic stress tolerances. Many plant metabolic activities depend on the antioxidant enzyme glutathione (GSH), which also chelates heavy metals. Keeping in view the stress mitigation potential of GSH, current research work was designed to inspect the beneficial role of seed priming with GSH on the growth, morphological and gas exchange attributes of broccoli seedlings under Pb stress. For this purpose, broccoli seeds were primed with 25, 50, and 75 µM L−1 GSH. Plant growth and photosynthetic activity were adversely affected by Pb stress. Furthermore, Pb stress enhanced proline levels along with reduced protein and phenol content. The application of GSH improved growth traits, total soluble proteins, chlorophyll content, mineral content, and gas exchange parameters. The involvement of GSH in reducing Pb concentrations was demonstrated by an improved metal tolerance index and lower Pb levels in broccoli plants. The results of the current study suggest that GSH can be used as a strategy to increase broccoli tolerance to Pb by enhancing nutrient uptake, growth and proline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afzal I, Basra SMA, Cheema MA, Farooq M, Jafar MZ, Shahid M, Yasmeen A (2013) Seed priming: a shotgun approach for alleviation of salt stress in wheat. Int J Agric Biol 15(6)

  • Al-Farraj AS, Al-Otabi TG, Al-Wabel MI (2009) Accumulation coefficient and translocation factor of heavy metals through Ochradenus baccatus plant grown on mining area at Mahad AD’Dahab, Saudi Arabia. WIT Trans Ecol Environ 122:459–468

    Article  Google Scholar 

  • Ali B, Song WJ, Hu WZ, Luo XN, Gill RA, Wang J, Zhou WJ (2014) Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape. Ecotoxicol Environ Saf 102:25–33

    Article  CAS  PubMed  Google Scholar 

  • Arbaoui S, Campanella B, Rezgui S, Paul R, Bettaieb T (2014) Bioaccumulation and photosynthetic activity response of kenaf (Hibicus cannabinus L.) to cadmium and zinc. Greener J Agri Sci 4(3):91–100

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi P, Karki H, Bargali K, Bargali SS (2016) Germination and seedling growth of pulse crop (Vigna spp.) as affected by soil salt stress. Curr Agric Res J 4(2):159–170

    Article  Google Scholar 

  • Babbar N, Oberoi HS, Sandhu SK, Bhargav VK (2014) Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol 51(10):2568–2575

    Article  CAS  PubMed  Google Scholar 

  • Balint AF, Röder MS, Hell R, Galiba G, Börner A (2007) Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol Plant 51(1):129–134

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bousquet J, Le Moing V, Blain H, Czarlewski W, Zuberbier T, de la Torre R, Anto JM et al (2021) Efficacy of broccoli and glucoraphanin in COVID-19: from hypothesis to proof-of-concept with three experimental clinical cases. World Allergy Org J 14(1):100498

    Article  CAS  Google Scholar 

  • Cai Y, Cao F, Wei K, Zhang G, Wu F (2011) Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. J Hazard Mater 192(3):1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Carleton AE, Foote WH (1965) A comparison of methods for estimating total leaf area of barley plants 1. Crop Sci 5(6):602–603

    Article  Google Scholar 

  • Chapman JF, Dale LS (1976) The determination of lithium isotope abundances with a dual-beam atomic absorption spectrometer. Anal Chim Acta 87(1):91–95

    Article  CAS  Google Scholar 

  • Chen IN, Chang CC, Ng CC, Wang CY, Shyu YT, Chang TL (2008) Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr 63(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu Q, Zhao X, Zhang H, Pang X, Yang H (2022) Inactivation efficacies of lactic acid and mild heat treatments against Escherichia coli strains in organic broccoli sprouts. Food Control 133:108577

    Article  CAS  Google Scholar 

  • Choppala G, Saifullah U, Bolan N, Bibi S, Iqbal M, Rengel Z, Ok YS et al (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391

    Article  CAS  Google Scholar 

  • Dai ZH, Guan DX, Bundschuh J, Ma LQ (2023) Roles of phytohormones in mitigating abiotic stress in plants induced by metal (loid) s As, Cd, Cr, Hg, and Pb. Crit Rev Environ Sci Technol 53(13):1310–1330

    Article  CAS  Google Scholar 

  • Davies BH (1965). Analysis of carotenoid pigments. Chemistry and biochemistry of plant pigments (TW Goodwin, ed)

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34(1–2):67–78

    CAS  Google Scholar 

  • Faostat, F. A. O. fao. org. 08 August (2021).

  • Fathi A, Tari DB (2016) Effect of drought stress and its mechanism in plants. Int J Life Sci 10(1):1–6

    Article  Google Scholar 

  • Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot erw403

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28(8):1056–1071

    Article  CAS  Google Scholar 

  • Gigliotti JC, Tin A, Pourafshar S, Cechova S, Wang YT, Sun-sang JS, Le TH et al (2020) GSTM1 deletion exaggerates kidney injury in experimental mouse models and confers the protective effect of cruciferous vegetables in mice and humans. J Am Soc Nephrol 31(1):102–116

    Article  CAS  PubMed  Google Scholar 

  • Gill RA, Kanwar MK, Dos Reis AR, Ali B (2021) Heavy metal toxicity in plants: recent insights on physiological and molecular aspects. Front Plant Sci 12

  • González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M (2016) Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front Plant Sci 7:1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Hameed A, Sharma I, Kumar A, Azooz MM, Lone HA, Ahmad P (2014) Glutathione metabolism in plants under environmental stress. In: Oxidative damage to plants. Academic Press, pp 183–200

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat ('Triticum aestivum’ L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6(8):1314–1323

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017a) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017b) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2):249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Mahmud JA, Alharby HF, Fujita M (2018) Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interact 13(1):203–212

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassini I, Martinez-Ballesta MC, Boughanmi N, Moreno DA, Carvajal M (2017) Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci Hortic 226:141–151

    Article  CAS  Google Scholar 

  • Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in Norway spruce (Picea abies (L.) Karst.). J Plant Physiol 133(4):486–491

    Article  Google Scholar 

  • Herlina L, Widianarko B (1918) Sunoko HR (2021) Effect of lead on growth and physiological responses of Hanjuang plant (Cordyline fruicosa). J Phys: Conf Ser 5:052034

    Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot

  • Isabel de Haro-Bravo M, del Rio-Celestino M, de Haro-Bailon A (2008) Uptake and accumulation of lead by broccoli plants grown in contaminated soils. Fresenius Environ Bull 17(10A):1640–1643

    CAS  Google Scholar 

  • Jain S, Muneer S, Guerriero G, Liu S, Vishwakarma K, Chauhan DK, Sharma S et al (2018) Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review. Plant Signal Behav 13(9):e1507401

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu NESE (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37(2):300–311

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang SM, Lee IJ (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69(8):797–808

    Article  CAS  Google Scholar 

  • Khattab H (2007) Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline conditions. Aust J Basic Appl Sci 1(3):323–334

    Google Scholar 

  • Kocsy G, Szalai G, Galiba G (2004) Effect of osmotic stress on glutathione and hydroxy methyl glutathione accumulation in wheat. J Plant Physiol 161(7):785–794

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Küpper FC, Spiller M (2006) [Heavy metal]-chlorophylls formed in vivo during heavy metal stress and degradation products formed during digestion, extraction and storage of plant material. In: Chlorophylls and bacteriochlorophylls. Springer, Dordrecht, pp 67–77

  • Lee YR, Chen M, Lee JD, Zhang J, Lin SY, Fu TM, Pandolfi PP et al (2019) Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 364(6441):eaau0159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39(4):949–962

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Song L, Liu Y, Han F, Liu W (2022) Electrophysiological, morphologic, and transcriptomic profiling of the ogura-CMS, DGMS and Maintainer Broccoli Lines. Plants 11(4):561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Cervantes J, Tirado-Noriega LG, Sánchez-Machado DI, Campas-Baypoli ON, Cantú-Soto EU, Núñez-Gastélum JA (2013) Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int J Food Sci Technol 48(11):2267–2275

    Article  Google Scholar 

  • López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D (2019) Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr 38(2):745–752

    Article  PubMed  Google Scholar 

  • Lovato FL, Teixeira da Rocha JB, Dalla Corte CL (2017) Diphenyl diselenide protects against methylmercury-induced toxicity in Saccharomyces cerevisiae via the Yap1 transcription factor. Chem Res Toxicol 30(5):1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Márquez-García B, Fernández-Recamales M, Córdoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. J Bot

  • Marschner H (ed) (2011) Marschner’s mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Molnár K, Biró-Janka B, Nyárádi II, Fodorpataki L, Varga BE, Bálint J, Duda MM (2020) Effects of priming with ascorbic acid, L-cystein and triacontanol on germination of rapeseed (L.). Acta Biologica Marisiensis 3(2):48–55

    Article  Google Scholar 

  • Moseley G, Jones JR (1984) The physical digestion of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) in the foregut of sheep. Br J Nutr 52(2):381–390

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251(6):1373–1386

    Article  CAS  PubMed  Google Scholar 

  • Moussa HR, Taha MA, Dessoky ES, Selem E (2023) Exploring the perspectives of irradiated sodium alginate on molecular and physiological parameters of heavy metal stressed Vigna radiata L. plants. Physiol Mol Biol Plants 1–12

  • Nadeem A, Ahmad SF, Al-Ayadhi LY, Attia SM, Al-Harbi NO, Alzahrani KS, Bakheet SA (2020) Differential regulation of Nrf2 is linked to elevated inflammation and nitrative stress in monocytes of children with autism. Psychoneuroendocrinology 113:104554

    Article  CAS  PubMed  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29(3):409–425

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49(321):623–647

    CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia BELEN, Foyer CH et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484

    Article  CAS  PubMed  Google Scholar 

  • Ogawa KI (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7(7–8):973–981

    Article  CAS  PubMed  Google Scholar 

  • Öğütücü G, Özdemir G, Acararicin Z, Aydin A (2021) Trend analysis of lead content in roadside plant and soil samples in Turkey. Turk J Pharm Sci 18(5):581

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Qiu B, Zeng F, Cai S, Wu X, Haider SI, Wu F, Zhang G (2013) Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. J Plant Physiol 170(8):772–779

    Article  CAS  PubMed  Google Scholar 

  • Sabetta W, Paradiso A, Paciolla C, Pinto MCD (2017) Chemistry, biosynthesis, and antioxidative function of glutathione in plants. In: Glutathione in plant growth, development, and stress tolerance. Springer, Cham, pp 1–27

  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47(3):339–347

    Article  CAS  PubMed  Google Scholar 

  • Salavati J, Fallah H, Niknejad Y, Barari Tari D (2021) Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. Physiol Mol Biol Plants 27:1089–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samardakiewicz S, Krzeszowiec-Jeleń W, Bednarski W, Jankowski A, Suski S, Gabryś H, Woźny A (2015) Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L. PLoS ONE 10(2):e0116757

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Sharangi AB, Soujannya S, Datta A (2020) Seed yield and quality of coriander (Coriandrum sativum L.) as influenced by seed priming. J Crop Weed 16(1):51–55

    Article  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Dumat C, et al (2015) Heavy metal stress and crop productivity. In: Crop production and global environmental issues. Springer, Cham, pp 1–25

  • Shao L, Cui J, Young LT, Wang JF (2008) The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes. Neuroscience 151(2):518–524

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    Article  CAS  Google Scholar 

  • USDA Broccoli, raw (2018) from https://fdc.nal.usda.gov/fdc-app.html/food-details/170379/nutrients. Accessed 4th Apr 2021 USDA, 2018

  • Talukdar D (2012) An induced glutathione-deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Biorem Biodiv Bioavail 6:75–86

    Google Scholar 

  • Talukdar D, Talukdar T (2014) RETRACTED ARTICLE: Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma 251(4):839–855

    Article  CAS  PubMed  Google Scholar 

  • Tränkner M, Tavakol E, Jákli B (2018) Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plant 163(3):414–431

    Article  Google Scholar 

  • Wakeel A (2013) Potassium–sodium interactions in soil and plant under saline-sodic conditions. J Plant Nutr Soil Sci 176(3):344–354

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasseen BT, Al-Thani RF (2013) Ecophysiology of wild plants and conservation perspectives in the State of Qatar. Agric Chem 37

  • Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121(4):1014–1019

    Article  CAS  Google Scholar 

  • Yuan-Yuan SUN, Yong-Jian SUN, Ming-Tian WANG, Xu-Yi LI, Xiang GUO, Rong HU, Jun MA (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36(11):1931–1940

    Article  Google Scholar 

  • Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Nie L et al (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78(2):167–178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Maria Ahmad: Performed experiment, Data curation, Writing- Original draft preparation, Software. Prof. Dr. Shakil Ahmed: Conceptualization, Methodology, Supervision.  Dr. Nasim Ahmad Yasin: Statistical analysis, Editing, Validation, Dr. Rehana Sardar: Conceptualization, Visualization, Investigation, Supervision, Software. Prof. Dr. Abdul Wahid: Writing- Reviewing and Editing, Validation.

Corresponding author

Correspondence to Rehana Sardar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Ahmed, S., Yasin, N.A. et al. Exogenous application of glutathione enhanced growth, nutritional orchestration and physiochemical characteristics of Brassica oleracea L. under lead stress. Physiol Mol Biol Plants 29, 1103–1116 (2023). https://doi.org/10.1007/s12298-023-01346-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01346-0

Keywords

Navigation