Skip to main content

Advertisement

Log in

Analysis of Specific Serum Markers for Early Prediction of Alzheimer's Disease in Adolescents with Down Syndrome

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Down syndrome (DS) is accompanied by cognitive manifestations resulting from full or partial extra chromosome 21. Amyloid precursor protein overexpression and the exponential aggregation of amyloid beta in the brain cause dementia in individuals with DS. This study aimed to uncover early serum marker candidates of amyloid precursor protein-like protein 1 beta species denoted APL1β25, APL1β27 and APL1β28 and the noradrenergic metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) as predictors of Alzheimer's disease (AD) in adolescents with DS and to elucidate the correlation between these parameters and the cognition of DS patients. This study included 30 DS cases (13–18 years old) with full trisomy 21 in addition to 30 healthy age-matched controls. The cognitive decline in DS subjects was evaluated using the short form of the Informant Questionnaire on Cognitive Decline in the Elderly (Short IQCODE). Serum levels of APL1b25, ALP1b27, ALP1b28 and MHPG were evaluated using enzyme-linked immunosorbent assay. The results indicated a significant positive correlation (P = 0.045) between IQCODE short score and APL1b25 serum level in DS patients. Also the present data recorded a significant reduction (P < 0.05) in APL1b25, APL1b27, APL1b28 and MHPG serum levels in DS patients contrary to the controls. Our findings confirm the impaired metabolism of APL1 peptides and the degeneration of noradrenergic neurons in DS patients which ultimately leads to early onset of AD. Noteworthy, the serum level of APL1b25 could be a prospective blood-based marker for early detection of cognitive decline and AD in adolescents with DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author but restrictions apply to the availability of these data due to the confidentiality of the patients’ clinical data.

References

  1. Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, et al. Down syndrome and Alzheimer’s disease: common pathways, common goals. Alzheimers Dement. 2015;11(6):700–9. https://doi.org/10.1016/j.jalz.2014.10.007.

    Article  PubMed  Google Scholar 

  2. Castro P, Zaman S, Holland A. Alzheimer’s disease in people with Down’s syndrome: the prospects for and the challenges of developing preventative treatments. J Neurol. 2017;264(4):804–13. https://doi.org/10.1007/s00415-016-8308-8.

    Article  PubMed  Google Scholar 

  3. deFrança Bram JM, Talib LL, Joaquim HPG, Carvalho CL, Gattaz WF, Forlenza OV. Alzheimer’s disease-related biomarkers in aging adults with down syndrome: systematic review. Curr Psychiatry Res Rev. 2019;15(1):49–57. https://doi.org/10.2174/1573400515666190122152855.

    Article  CAS  Google Scholar 

  4. Chen XQ, Xing Z, Chen QD, Salvi RJ, Zhang X, Tycko B, et al. Mechanistic analysis of age-related clinical manifestations in down syndrome. Front Aging Neurosci. 2021;13: 700280. https://doi.org/10.3389/fnagi.2021.700280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee NC, Chien YH, Hwu WL. A review of biomarkers for Alzheimer’s disease in down syndrome. Neurol Ther. 2017;6(Suppl 1):69–81. https://doi.org/10.1007/s40120-017-0071-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fortea J, Zaman SH, Hartley S, Rafii MS, Head E, Carmona-Iragui M. Alzheimer’s disease associated with Down syndrome: a genetic form of dementia. Lancet Neurol. 2021;20(11):930–42. https://doi.org/10.1016/S1474-4422(21)00245-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lott IT, Head E. Dementia in down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol. 2019;15(3):135–47. https://doi.org/10.1038/s41582-018-0132-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress. 2018;2(11):292–310. https://doi.org/10.15698/cst2018.11.162.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Head E, Lott IT, Wilcock DM, Lemere CA. Aging in down syndrome and the development of Alzheimer’s Disease neuropathology. Curr Alzheimer Res. 2016;13(1):18–29. https://doi.org/10.2174/1567205012666151020114607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dekker AD, Coppus AM, Vermeiren Y, Aerts T, van Duijn CM, Kremer BP, et al. Serum MHPG strongly predicts conversion to Alzheimer’s disease in behaviorally characterized subjects with Down syndrome. J Alzheimers Dis. 2015;43(3):871–91. https://doi.org/10.3233/JAD-140783.

    Article  CAS  PubMed  Google Scholar 

  11. Mori C, Spooner ET, Wisniewsk KE, Wisniewski TM, Yamaguch H, Saido TC, Tolan DR, Selkoe DJ, Lemere CA. Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid. 2002;9(2):88–102.

    Article  CAS  PubMed  Google Scholar 

  12. Zammit MD, Tudorascu DL, Laymon CM, Hartley SL, Zaman SH, Ances BM, et al. PET measurement of longitudinal amyloid load identifies the earliest stages of amyloid-beta accumulation during Alzheimer’s disease progression in down syndrome. Neuroimage. 2021;228: 117728. https://doi.org/10.1016/j.neuroimage.2021.117728.

    Article  CAS  PubMed  Google Scholar 

  13. Dekker AD, Fortea J, Blesa R, De Deyn PP. Cerebrospinal fluid biomarkers for Alzheimer’s disease in Down syndrome. Alzheimers Dement. 2017;8:1–10. https://doi.org/10.1016/j.dadm.2017.02.006.

    Article  Google Scholar 

  14. Portelius E, Hölttä M, Soininen H, Bjerke M, Zetterberg H, Westerlund A, et al. Altered cerebrospinal fluid levels of amyloid β and amyloid precursor-like protein 1 peptides in Down’s syndrome. Neuromol Med. 2014;16(2):510–6. https://doi.org/10.1007/s12017-014-8302-1.

    Article  CAS  Google Scholar 

  15. Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18(5):281–98. https://doi.org/10.1038/nrn.2017.29.

    Article  CAS  PubMed  Google Scholar 

  16. Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, et al. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. Elife. 2016;5: e12748. https://doi.org/10.7554/eLife.12748.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yanagida K, Okochi M, Tagami S, Nakayama T, Kodama TS, Nishitomi K, et al. The 28-amino acid form of an APLP1-derived Abeta-like peptide is a surrogate marker for Abeta42 production in the central nervous system. EMBO Mol Med. 2009;1(4):223–35. https://doi.org/10.1002/emmm.200900026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jorm AF. A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): development and cross-validation. Psychol Med. 1994;24(1):145–53. https://doi.org/10.1017/S003329170002691X.

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen KV. The human β-amyloid precursor protein: biomolecular and epigenetic aspects. Biomol Concepts. 2015;6(1):11–32. https://doi.org/10.1515/bmc-2014-0041.

    Article  CAS  PubMed  Google Scholar 

  20. Vogelezang S, Bradfield JP, Grant SFA, Felix JF, Jaddoe VWV, Early Growth Genetics Consortium. Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes. BMC Med Genom. 2022;15(1):124. https://doi.org/10.1186/s12920-022-01281-1.

    Article  Google Scholar 

  21. Yuan S, Wu W, Ma W, Huang X, Huang T, Peng M, Xu A, Lyu J. Body mass index, genetic susceptibility, and Alzheimer’s disease: a longitudinal study based on 475,813 participants from the UK Biobank. J Transl Med. 2022;20(1):417. https://doi.org/10.1186/s12967-022-03621-2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bouwman FH, Frisoni GB, Johnson SC, Chen X, Engelborghs S, Ikeuchi T, Paquet C, Ritchie C, Bozeat S, Quevenco FC, Teunissen C. Clinical application of CSF biomarkers for Alzheimer’s disease: from rationale to ratios. Alzheimers Dement (Amst). 2022;14(1): e12314. https://doi.org/10.1002/dad2.12314.

    Article  PubMed  Google Scholar 

  23. Sun X, Tong Y, Qing H, Chen CH, Song W. Increased BACE1 maturation contributes to the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J. 2006;20(9):1361–8. https://doi.org/10.1096/fj.05-5628com.

    Article  CAS  PubMed  Google Scholar 

  24. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, Zhou J, Yan R, Vanmechelen E, De Vos A, Nisticò R, Corbo M, Imbimbo BP, Streffer J, Voytyuk I, Timmers M, Tahami Monfared AA, Irizarry M, Albala B, Koyama A, Watanabe N, Kimura T, Yarenis L, Lista S, Kramer L, Vergallo A. The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–56. https://doi.org/10.1016/j.biopsych.2020.02.001.

    Article  CAS  PubMed  Google Scholar 

  25. Schauenburg L, Liebsch F, Eravci M, Mayer MC, Weise C, Multhaup G. APLP1 is endoproteolytically cleaved by γ-secretase without previous ectodomain shedding. Sci Rep. 2018;8:1916. https://doi.org/10.1038/s41598-018-19530-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perluigi M, Pupo G, Tramutola A, Cini C, Coccia R, Barone E, et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta. 2014;1842(7):1144–53. https://doi.org/10.1016/j.bbadis.2014.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adlerz L, Holback S, Multhaup G, Iverfeldt K. IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem. 2007;282(14):10203–9. https://doi.org/10.1074/jbc.M611183200.

    Article  CAS  PubMed  Google Scholar 

  28. Jacobsen KT, Iverfeldt K. Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci. 2009;66(14):2299–318. https://doi.org/10.1007/s00018-009-0020-8.

    Article  CAS  PubMed  Google Scholar 

  29. Herrmann N, Lanctôt KL, Khan LR. The role of norepinephrine in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci. 2004;16(3):261–76. https://doi.org/10.1176/jnp.16.3.261.

    Article  CAS  PubMed  Google Scholar 

  30. Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, et al. Ascending monoaminergic systems alterations in Alzheimer’s disease. Translating basic science into clinical care. Neurosci Biobehav Rev. 2013;37(8):1363–79. https://doi.org/10.1016/j.neubiorev.2013.05.008.

    Article  CAS  PubMed  Google Scholar 

  31. Coleman M, Campbell M, Freedman LS, Roffman M, Ebstein RP, Goldstein M. Serum dopamine-beta-hydroxylase levels in Down’s syndrome. Clin Genet. 1974;5(4):312–5. https://doi.org/10.1111/j.1399-0004.1974.tb01699.x.

    Article  CAS  PubMed  Google Scholar 

  32. Fowler CJ, Wiberg A, Gustavson KH, Winblad B. Platelet monoamine oxidase activity in Down’s syndrome. Clin Genet. 1981;19(5):307–11. https://doi.org/10.1111/j.1399-0004.1981.tb00716.x.

    Article  CAS  PubMed  Google Scholar 

  33. Brahe C, Bannetta P, Serra A, Arwert F. The increased COMT activity in Down syndrome patients is not a consequence of dosage effect owing to location of the gene on chromosome 21: further evidence. Am J Med Genet. 1986;24(1):203–4. https://doi.org/10.1002/ajmg.1320240127.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Research Centre, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

NAM and HHA conceived and designed the study. NAM and GE conducted the clinical assessments. EAFE performed the lab experiments. MH contributed to the collection, analysis and interpretation of data. HHA wrote the manuscript and AAD critically revised it. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hanaa H. Ahmed.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Medical Research Ethics Committee of the National Research Centre, Egypt under the Code Number 4413042021. A written informed consent was obtained from the caregiver of each subject.

Consent for Publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meguid, N.A., Hemimi, M., Elpatrik, G. et al. Analysis of Specific Serum Markers for Early Prediction of Alzheimer's Disease in Adolescents with Down Syndrome. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01206-y

Keywords

Navigation