Skip to main content
Log in

Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In catalysis, tuning the structural composition of the metal alloy is known as an efficient way to optimize the catalytic activity. This work presents the synthesis of compositional segregated six-armed PtCu nanostars via a facile solvothermal method and their distinct composition-structure-dependent performances in electrooxidation processes. The alloy is shown to have a unique six arms with a Cu-rich dodecahedral core, mainly composed of {110} facets and exhibit superior catalytic activity toward alcohols electrooxidation compared to the hollow counterpart where Cu was selectively etched. Density functional theory (DFT) calculations suggest that the formation of hydroxyl intermediate (OH*) is crucial to detoxify CO poisoning during the electrooxidation processes. The addition of Cu is found to effectively adjust the d band location of the alloy catalyst and thus enhance the formation of *OH intermediate from water splitting, which decreases the coverage of *CO intermediate. Our work demonstrates that the unique compositional anisotropy in alloy catalyst may boost their applications in electrocatalysis and provides a methodology for the design of this type catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

    Article  Google Scholar 

  2. Zhao, X.; Zhang, J.; Wang, L. J.; Li, H. X.; Liu, Z. L.; Chen, W. Ultrathin PtPdCu nanowires fused porous architecture with 3D molecular accessibility: An active and durable platform for methanol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 26333–26339.

    Article  Google Scholar 

  3. Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722–9725.

    Article  Google Scholar 

  4. Du, X. W.; Luo, S. P.; Du, H. Y.; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A 2016, 4, 1579–1585.

    Article  Google Scholar 

  5. Luo, S. P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.

    Article  Google Scholar 

  6. Rossmeisl, J.; Ferrin, P.; Tritsaris, G. A.; Nilekar, A. U.; Koh, S.; Bae, S. E.; Brankovic, S. R.; Strasser, P.; Mavrikakis, M. Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ. Sci. 2012, 5, 8335–8342.

    Article  Google Scholar 

  7. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  Google Scholar 

  8. Maya-Cornejo, J.; Carrera-Cerritos, R.; Sebastián, D.; Ledesma-García, J.; Arriaga, L. G.; Aricò, A. S.; Baglio, V. PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int. J. Hydrogen Energy 2017, 42, 27919–27928.

    Article  Google Scholar 

  9. Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

    Article  Google Scholar 

  10. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

    Article  Google Scholar 

  11. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  12. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  13. Kang, Y. J.; Yang, P. D.; Markovic, N. M.; Stamenkovic, V. R. Shaping electrocatalysis through tailored nanomaterials. Nano Today 2016, 11, 587–600.

    Article  Google Scholar 

  14. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741

  15. Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

  16. Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

    Article  Google Scholar 

  17. Wang, W. Y.; Wang, D. S.; Liu, X. W.; Peng, Q.; Li, Y. D. Pt-Ni nanodendrites with high hydrogenation activity. Chem. Commun. 2013, 49, 2903–2905.

    Article  Google Scholar 

  18. Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B. H.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991.

    Article  Google Scholar 

  19. Pei, J. J.; Mao, J. J.; Liang, X.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Ultrathin Pt–Zn nanowires: High-performance catalysts for electrooxidation of methanol and formic acid. ACS Sustainable Chem. Eng. 2018, 6, 77–81.

    Article  Google Scholar 

  20. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  Google Scholar 

  21. Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578–7584.

    Article  Google Scholar 

  22. Park, J.; Kanti Kabiraz, M.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844–10851.

    Article  Google Scholar 

  23. Zhang, N.; Feng, Y. G.; Zhu, X.; Guo, S. J.; Guo, J.; Huang, X. Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv. Mater. 2017, 29, 1603774.

  24. Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

  25. He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

  26. Chen, S.; Su, H. Y.; Wang, Y. C.; Wu, W. L.; Zeng, J. Size-controlled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes. Angew. Chem., Int. Ed. 2015, 54, 108–113.

    Article  Google Scholar 

  27. Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater. 2018, 30, 1804074.

  28. Liu, T. Y.; Wang, K.; Yuan, Q.; Shen, Z. B.; Wang, Y.; Zhang, Q. H.; Wang, X. Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale 2017, 9, 2963–2968.

    Article  Google Scholar 

  29. Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinum-lead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small 2016, 12, 4464–4470.

    Article  Google Scholar 

  30. Xu, H.; Liu, C. F.; Song, P. P.; Wang, J.; Gao, F.; Zhang, Y. P.; Shiraishi, Y.; Di, J.; Du, Y. K. Ethylene glycol electrooxidation based on pentangle-like PtCu nanocatalysts. Chem.—Asian J. 2018, 13, 626–630.

    Article  Google Scholar 

  31. ttoni, C. A; Ramos, C. E. D.; de Souza, R. F. B.; da Silva, S. G.; Spinace, E. V.; Neto, A. O. Glycerol and ethanol oxidation in alkaline medium using PtCu/C electrocatalysts. Int. J. Electrochem. Sci. 2018, 13, 1893–1904.

    Google Scholar 

  32. Bai, S. X.; Shao, Q.; Wang, P. T.; Dai, Q. G.; Wang, X. Y.; Huang, X. Q. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827–6830.

    Article  Google Scholar 

  33. Dos Reis, R. G. C. S.; Colmati, F. Electrochemical alcohol oxidation: A comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles. J. Solid State Electrochem. 2016, 20, 2559–2567.

    Article  Google Scholar 

  34. Fan, Y.; Liu, P. F.; Zhang, Z. W.; Cui, Y.; Zhang, Y. Three-dimensional hierarchical porous platinum–copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation. J. Power Sources 2015, 296, 282–289.

    Article  Google Scholar 

  35. Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. G.; Wang, Y.; Cao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632–2640.

    Article  Google Scholar 

  36. Shi, W. W.; Chen, X. Q.; Xu, S. Y.; Cui, J. B.; Wang, L. Y. Highly efficient PdCu3 nanocatalysts for Suzuki–Miyaura reaction. Nano Res. 2016, 9, 2912–2920.

    Article  Google Scholar 

  37. Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.

    Article  Google Scholar 

  38. Gao, D. W.; Li, S. N.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res. 2018, 11, 2612–2624.

    Article  Google Scholar 

  39. Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Wang, R. M. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2016, 60, 57–67.

    Article  Google Scholar 

  40. Zhang, Y.; Zhang, J. F.; Chen, Z. L.; Liu, Y. W.; Zhang, M. M.; Han, X. P.; Zhong, C.; Hu, W. B.; Deng, Y. D. One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Sci. China Mater. 2018, 61, 697–706.

    Article  Google Scholar 

  41. Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

    Article  Google Scholar 

  42. Cao, J. Y.; Du, Y. Y.; Dong, M. M.; Chen, Z. D.; Xu, J. Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. J. Alloys Compd. 2018, 747, 124–130.

    Article  Google Scholar 

  43. Chen, B.; Cheng, D. J.; Zhu, J. Q. Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction. J. Power Sources 2014, 267, 380–387.

    Article  Google Scholar 

  44. Liu, X. W.; Wang, W. Y.; Li, H.; Li, L. S.; Zhou, G. B.; Yu, R.; Wang, D. S.; Li, Y. D. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.

  45. Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 2017, 10, 1751–1756.

    Article  Google Scholar 

  46. Liao, Y.; Yu, G.; Zhang, Y.; Guo, T. T.; Chang, F. F.; Zhong, C. J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J. Phys. Chem. C 2016, 120, 10476–10484.

    Article  Google Scholar 

  47. Yan, X. X.; Chen, Y. F.; Deng, S. H.; Yang, Y. F.; Huang, Z. N.; Ge, C. W.; Xu, L.; Sun, D. M.; Fu, G. T.; Tang, Y. W. In situ integration of ultrathin PtCu nanowires with reduced graphene oxide nanosheets for efficient electrocatalytic oxygen reduction. Chem.—Eur. J. 2017, 23, 16871–16876.

    Article  Google Scholar 

  48. Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.

    Article  Google Scholar 

  49. Fu, G. T.; Yan, X. X.; Cui, Z. M.; Sun, D. M.; Xu, L.; Tang, Y. W.; Goodenough, J. B.; Lee, J. M. Catalytic activities for methanol oxidation on ultrathin CuPt3 wavy nanowires with/without smart polymer. Chem. Sci. 2016, 7, 5414–5420.

    Article  Google Scholar 

  50. Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem. Commun. 2011, 47, 8094–8096.

    Article  Google Scholar 

  51. Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Elementspecific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.

    Article  Google Scholar 

  52. Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl. Acad. Sci. USA 2013, 110, 6669–6673.

    Article  Google Scholar 

  53. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  54. Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 2016, 15, 1188–1194.

    Article  Google Scholar 

  55. Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem., Int. Ed. 2011, 50, 7850–7854.

    Article  Google Scholar 

  56. Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

    Article  Google Scholar 

  57. Housmans, T. H. M.; Wonders, A. H.; Koper, M. T. M. Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study. J. Phys. Chem. B 2006, 110, 10021–10031.

    Article  Google Scholar 

  58. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  59. Ferrin, P.; Mavrikakis, M. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 2009, 131, 14381–14389.

    Article  Google Scholar 

  60. Xia, X. H.; Iwasita, T.; Ge, F.; Vielstich, W. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochim. Acta 1996, 41, 711–718.

    Article  Google Scholar 

  61. Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Mechanism and kinetics of the electrochemical co adlayer oxidation on Pt(111). J. Electroanal. Chem. 2002, 524–525, 242–251.

  62. Tripkovic, A. V.; Popovic, K. Ð.; Momcilovic, J. D.; Dražic, D. M. Kinetic and mechanistic study of methanol oxidation on a Pt(110) surface in alkaline media. Electrochim. Acta 1998, 44, 1135–1145.

    Article  Google Scholar 

  63. Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 275–283.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the support from National Natural Science Foundation of China (Nos. 21571001, 21372006, 21631001, and U1532141), the Ministry of Education, the Education Department of Anhui Province, and 211 Project of Anhui University. Y. G. W. gratefully acknowledges the financial support from Southern University of Science and Technolgoy (SUSTech). The calculations were performed by using the Taiyi high-performance supercomputer cluster located at SUSTech.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li, Yang-Gang Wang or Manzhou Zhu.

Electronic supplementary material

12274_2019_2367_MOESM1_ESM.pdf

Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhang, W., Li, P. et al. Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation. Nano Res. 12, 1147–1153 (2019). https://doi.org/10.1007/s12274-019-2367-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2367-y

Keywords

Navigation