Skip to main content
Log in

Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The synthesis of atomically ordered Pt-based intermetallic electrocatalysts for the direct alcohol fuel cells generally requires the addition of surfactants or the high-temperature annealing. However, some residual surfactants on the surface of the as-synthesized catalysts would prevent the exposure of catalytic active sites, and the high-temperature annealing process is easy to accelerate the sintering of the metal, which both lead to the decline of electrocatalytic performance. Herein, we construct the atomically ordered bimetallic PtBi intermetallics with clean surfaces and unique three-dimensional hollow acorn-shell-like structure (3D PtBi HASL) by a simple, low-temperature, and surfactant-free one-pot synthetic approach. Benefiting from the special hollow structures, the obtained 3D PtBi HASL intermetallics expose abundant accessible active sites. Moreover, the introduction of oxophilic metal Bi can enhance adsorption of OHads, thereby significantly facilitating removal of poisoned intermediates. Density functional theory (DFT) simulations further indicate that formation of the PtBi intermetallic phase with the downshift of the Pt d-band center endows 3D Pt49.4Bi50.6 HASL intermetallics with significantly attenuated COads and enhanced OHads adsorption, bringing about the boosting electrocatalytic property. The mass activity of the 3D Pt49.4Bi50.6 HASL intermetallics for ethylene glycol oxidation reaction is as high as 24.67 A·mgPt−1, which is 12.98 times higher than that of commercial Pt/C (1.90 A·mgPt−1). This work may inspire the design of Pt-based intermetallics as high-efficiency anode electrocatalysts for fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, L.; Chen, R. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production. J. Power Sources 2016, 329, 484–501.

    CAS  Google Scholar 

  2. Antolini, E.; Gonzalez, E. R. Alkaline direct alcohol fuel cells. J. Power Sources 2010, 195, 3431–3450.

    CAS  Google Scholar 

  3. Serov, A.; Kwak, C. Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl. Catal. B Environ. 2010, 97, 1–12.

    CAS  Google Scholar 

  4. Wang, H.; Jiang, B.; Zhao, T. T.; Jiang, K.; Yang, Y. Y.; Zhang, J. W.; Xie, Z. X.; Cai, W. B. Electrocatalysis of ethylene glycol oxidation on bare and Bi-modified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation. ACS Catal. 2017, 7, 2033–2041.

    CAS  Google Scholar 

  5. Ji, N.; Zhang, T.; Zheng, M. Y.; Wang, A. Q.; Wang, H.; Wang, X. D.; Chen, J. G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem., Int. Ed. 2008, 47, 8510–8513.

    CAS  Google Scholar 

  6. Yue, H. R.; Zhao, Y. J.; Ma, X. B.; Gong, J. L. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 47, 4218–4244.

    Google Scholar 

  7. Qiao, B.; Yang, T.; Shi, S. F.; Jia, N.; Chen, Y.; Chen, X. B.; An, Z. W.; Chen, P. Highly active hollow RhCu nanoboxes toward ethylene glycol electrooxidation. Small 2021, 17, 2006534.

    CAS  Google Scholar 

  8. Li, S. N.; Sun, H. X.; Zhang, J. A.; Zheng, L. J.; Li, Y. R.; Fang, X.; Liu, Y. J.; Song, Q.; Wang, Z.; Gao, Y. F. et al. Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation. Nano Res. 2022, 15, 7877–7886.

    CAS  Google Scholar 

  9. Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

    CAS  Google Scholar 

  10. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p—d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    CAS  Google Scholar 

  11. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/ANIE.202213318.

  12. Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K. et al. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS Catal. 2021, 11, 12284–12292.

    CAS  Google Scholar 

  13. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru—Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    CAS  Google Scholar 

  14. Huang, L. P.; Zhang, W.; Zhong, Y. F.; Li, P.; Xiang, D.; Uddin, W.; Li, X. W.; Wang, Y. G.; Yuan, X. Y.; Wang, D. S. et al. Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Sci. China Mater. 2021, 64, 601–610.

    CAS  Google Scholar 

  15. Zhao, X. R.; Cheng, H.; Song, L.; Han, L. L.; Zhang, R.; Kwon, G.; Ma, L.; Ehrlich, S. N.; Frenkel, A. I.; Yang, J. et al. Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 2021, 11, 184–192.

    Google Scholar 

  16. Xing, Z. H.; Li, J.; Wang, S.; Su, C. L.; Jin, H. L. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Res. 2022, 15, 3866–3871.

    CAS  Google Scholar 

  17. Xiao, W. P.; Lei, W.; Gong, M. X.; Xin, H. L.; Wang, D. L. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8, 3237–3256.

    CAS  Google Scholar 

  18. Zhu, Z. Q.; Liu, F.; Fan, J. C.; Li, Q. X.; Min, Y. L.; Xu, Q. J. C2 alcohol oxidation boosted by trimetallic PtPbBi hexagonal nanoplates. ACS Appl. Mater. Interfaces 2020, 12, 52731–52740.

    CAS  Google Scholar 

  19. Han, X.; Wang, Q. X.; Zheng, Z. P.; Nan, Z. A.; Zhang, X. B.; Song, Z. J.; Ma, M.; Zheng, J.; Kuang, Q.; Zheng, L. S. Size-controlled intermetallic PtZn nanoparticles on N-doped carbon support for enhanced electrocatalytic oxygen reduction. ACS Sustainable Chem. Eng. 2021, 9, 3821–3827.

    CAS  Google Scholar 

  20. Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768.

    CAS  Google Scholar 

  21. Chen, W.; Lei, Z.; Zeng, T.; Wang, L.; Cheng, N. C.; Tan, Y. Y.; Mu, S. C. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction. Nanoscale 2019, 11, 19895–19902.

    CAS  Google Scholar 

  22. Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn Nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

    CAS  Google Scholar 

  23. Lim, J.; Jung, C.; Hong, D.; Bak, J.; Shin, J.; Kim, M.; Song, D.; Lee, C.; Lim, J.; Lee, H. et al. Atomically ordered Pt3Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. J. Mater. Chem. A 2022, 10, 7399–7408.

    CAS  Google Scholar 

  24. Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623–2632.

    CAS  Google Scholar 

  25. Chen, D. J.; Tong, Y. J. Irrelevance of carbon monoxide poisoning in the methanol oxidation reaction on a PtRu electrocatalyst. Angew. Chem., Int. Ed. 2015, 54, 9394–9398.

    CAS  Google Scholar 

  26. Wu, X. Q.; Jiang, Y.; Yan, Y. C.; Li, X.; Luo, S.; Huang, J. B.; Li, J. J.; Shen, R.; Yang, D. R.; Zhang, H. Tuning surface structure of Pd3Pb/PtnPb nanocrystals for boosting the methanol oxidation reaction. Adv. Sci. 2019, 6, 1902249.

    CAS  Google Scholar 

  27. Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

    CAS  Google Scholar 

  28. Jin, Y.; Ren, G. M.; Feng, Y. G.; Geng, S. Z.; Li, L.; Zhu, X.; Guo, J.; Shao, Q.; Xu, Y.; Huang, X. Q. et al. A top-down strategy to realize the synthesis of small-sized L10-platinum-based intermetallic compounds for selective hydrogenation. Nano Res. 2022, 15, 9631–9638.

    CAS  Google Scholar 

  29. Liu, R.; Gong, Z. C.; Yan, M. M.; Ye, G. L.; Fei, H. L. Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation. Nano Res., in press, https://doi.org/10.1007/s12274-022-4749-9.

  30. Liang, W. K.; Wang, Y. W.; Zhao, L.; Guo, W.; Li, D.; Qin, W.; Wu, H. H.; Sun, Y. H.; Jiang, L. 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 2021, 33, 2100713.

    CAS  Google Scholar 

  31. Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 2018, 14, 1703940.

    Google Scholar 

  32. Yao, W. Q.; Jiang, X.; Li, M.; Li, Y. L.; Liu, Y. Y.; Zhan, X.; Fu, G. T.; Tang, Y. W. Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol. Appl. Catal. B Environ. 2021, 282, 119595.

    CAS  Google Scholar 

  33. Mahsud, A.; Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Chen, J. X.; Yin, Y. D.; Zhang, Q. Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Res. 2021, 14, 2819–2825.

    CAS  Google Scholar 

  34. Chen, Z. L.; Zhang, J. F.; Zhang, Y.; Liu, Y. W.; Han, X. P.; Zhong, C.; Hu, W. B.; Deng, Y. D. NiO-induced synthesis of PdNi bimetallic hollow nanocrystals with enhanced electrocatalytic activities toward ethanol and formic acid oxidation. Nano Energy 2017, 42, 353–362.

    CAS  Google Scholar 

  35. Li, Z. L.; Gao, F.; Zou, B.; Wu, Z. Y.; Zhang, Y. P.; Du, Y. K. Core@shell PtAuAg@PtAg hollow nanodendrites as effective electrocatalysts for methanol and ethylene glycol oxidation. Inorg. Chem. 2021, 60, 9977–9986.

    CAS  Google Scholar 

  36. Xu, H.; Song, P. P.; Yan, B.; Wang, J.; Guo, J.; Du, Y. K. Surface-plasmon-enhanced photo-electrocatalytic ethylene glycol oxidation based on highly open AuAg nanobowls. ACS Sustainable Chem. Eng. 2018, 6, 4138–4146.

    CAS  Google Scholar 

  37. Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

    CAS  Google Scholar 

  38. Zhang, J. X.; Yuan, M. L.; Zhao, T. K.; Wang, W. B.; Huang, H. Y.; Cui, K. R.; Liu, Z. J.; Li, S. W.; Li, Z. H.; Zhang, G. J. Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis with high CO tolerance. J. Mater. Chem. A 2021, 9, 20676–20684.

    CAS  Google Scholar 

  39. Yang, X. T.; Yao, K. X.; Ye, J. Y.; Yuan, Q.; Zhao, F. L.; Li, Y. F.; Zhou, Z. Y. Interface-rich three-dimensional Au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 2021, 31, 2103671.

    CAS  Google Scholar 

  40. Feng, Y. G.; Shao, Q.; Lv, F.; Bu, L. Z.; Guo, J.; Guo, S. J.; Huang, X. Q. Intermetallic PtBi nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels. Adv. Sci. 2020, 7, 1800178.

    CAS  Google Scholar 

  41. Han, S. M.; Ma, Y.; Yun, Q. B.; Wang, A. L.; Zhu, Q. S.; Zhang, H.; He, C. H.; Xia, J.; Meng, X. M.; Gao, L. et al. The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation. Adv. Funct. Mater. 2022, 2208760.

    Google Scholar 

  42. Yuan, X. L.; Jiang, X. J.; Cao, M. H.; Chen, L.; Nie, K. Q.; Zhang, Y.; Xu, Y.; Sun, X. H.; Li, Y. G.; Zhang, Q. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 2019, 12, 429–436.

    CAS  Google Scholar 

  43. Simões, M.; Baranton, S.; Coutanceau, C. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal. B Environ. 2011, 110, 40–49.

    Google Scholar 

  44. Yang, M. L. Catalytic activities of PtBi nanoparticles toward methanol electrooxidation in acid and alkaline media. J. Power Sources 2013, 229, 42–47.

    CAS  Google Scholar 

  45. Huang, Y. Y.; Cai, J. D.; Guo, Y. L. A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium. Appl. Catal. B Environ. 2013, 129, 549–555.

    CAS  Google Scholar 

  46. Zhou, C. M.; Guo, Z.; Dai, Y. H.; Jia, X. L.; Yu, H.; Yang, Y. H. Promoting role of bismuth on carbon nanotube supported platinum catalysts in aqueous phase aerobic oxidation of benzyl alcohol. Appl. Catal. B Environ. 2016, 181, 118–126.

    CAS  Google Scholar 

  47. Sun, D.; Wang, Y. F.; Livi, K. J. T.; Wang, C. H.; Luo, R. C.; Zhang, Z. Q.; Alghamdi, H.; Li, C. Y.; An, F. F.; Gaskey, B. et al. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano 2019, 13, 10818–10825.

    CAS  Google Scholar 

  48. Li, H. H.; Cui, C. H.; Zhao, S.; Yao, H. B.; Gao, M. R.; Fan, F. J.; Yu, S. H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.

    CAS  Google Scholar 

  49. Pech-Rodríguez, W. J.; Calles-Arriaga, C.; González-Quijano, D.; Vargas-Gutiérrez, G.; Morais, C.; Napporn, T. W.; Rodríguez-Varela, F. J. Electrocatalysis of the ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media. J. Power Sources 2018, 375, 335–344.

    Google Scholar 

  50. Watanabe, M.; Zhu, Y. M.; Uchida, H. Oxidation of CO on a Pt—Fe alloy electrode studied by surface enhanced infrared reflection—absorption spectroscopy. J. Phys. Chem. B 2000, 104, 1762–1768.

    CAS  Google Scholar 

  51. Wang, C.; Jin, L. J.; Shang, H. Y.; Xu, H.; Shiraishi, Y.; Du, Y. K. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 2108–2116.

    CAS  Google Scholar 

  52. Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043–4049.

    CAS  Google Scholar 

  53. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  54. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  55. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  56. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  57. Gao, D. W.; Li, S. N.; Song, G. L.; Luo, M. C.; Lv, Y. P.; Yang, S. H.; Ma, X. L.; Zhang, X.; Li, C. C.; Wei, Q. et al. Inner space- and architecture-controlled nanoframes for efficient electro-oxidation of liquid fuels. J. Mater. Chem. A 2019, 7, 19280–19289.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Anhui Province (Nos. 2108085MB55 and 2208085MB24), the National Natural Science Foundation of China (Nos. 21571001, 21706048, and 21701001), and the Natural Science Research Project of Anhui Province (Nos. KJ2021A0004 and KJ2020ZD04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenjie Sun, Kun Wang or Peng Li.

Electronic Supplementary Material

12274_2022_5336_MOESM1_ESM.pdf

Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, T., Huang, X., Li, S. et al. Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation. Nano Res. 16, 6560–6567 (2023). https://doi.org/10.1007/s12274-022-5336-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5336-9

Keywords

Navigation