Skip to main content
Log in

Electrochemical alcohol oxidation: a comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-supported PtCu and PtSn (both with an atomic ratio of 3:1) nanoparticles were prepared by reducing Pt, Sn, and Cu precursors via refluxing in ethanol. They were characterized using energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM). X-ray diffraction indicated that the lattice parameter of Pt increases with the addition of Sn and decreases with the addition of Cu, indicating that both PtCu and PtSn are solid solutions. EDX analysis revealed that the compositions of these materials are close to their nominal compositions, while TEM showed that both materials presented a homogeneous particle distribution on the carbon support and low particle agglomeration. Electrochemical experiments indicated that all of the materials are electrochemically active with respect to methanol, ethanol, propanol, and butanol oxidation in H2SO4 solution. The electrochemical measurements also showed that PtSn is more active in ethanol oxidation, whereas PtCu is more active in methanol oxidation. Both materials showed similar electrooxidative activities towards propanol and butanol, and they presented higher electrochemical acidities than pure platinum for alcohol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b
Fig. 3a–b
Fig. 4a–b
Fig. 5
Fig. 6a–d
Fig. 7

Similar content being viewed by others

References

  1. Kamarudin MZF, Mararudin SK, Masdar MS, Daud (2013) Int J Hydrogen Energy 38:9438–9453

    Article  CAS  Google Scholar 

  2. Bonesi A, Asteazaran M, Moreno MS, Zampieri G, Bengio S, Triaca W, Castro Luna AM (2013) J Solid State Electrochem 17:1823–1829

    Article  CAS  Google Scholar 

  3. Linares JJ, Zignani SC, Rocha TA, Gonzalez ER (2013) J Appl Electrochem 43:147–158

    Article  CAS  Google Scholar 

  4. Pearson A, O’Mullane AP (2015) Chem Commun 51:11297–11300

    Article  CAS  Google Scholar 

  5. Shao MH, Adzic RR (2005) Electrochim Acta 50:2415–2422

    Article  CAS  Google Scholar 

  6. Silva JCM, Anea B, de Souza RFB, Assumpção MHMT, Calegaro ML, Neto AO, Santos MC (2013) J Braz Chem Soc 24:1553–1560

    Article  CAS  Google Scholar 

  7. Coutanceau C, Brimaud S, Lamy C, Leger J-M, Dubai L, Rousseau S, Vigier F (2008) Electrochim Acta 53:6865–6880

    Article  CAS  Google Scholar 

  8. Ciapina E, Gonzalez ER (2009) J Electroanal Chem 626:130–142

    Article  CAS  Google Scholar 

  9. Asgardi J, Calderon JC, Alcaide F, Quereja A, Calvillo L, Lazaro MJ, Garcia G, Pastor E (2015) Appl Catal B Environ 168:33–41

    Article  Google Scholar 

  10. de Souza RFB, Silva JCM, Assumpção MHT, Neto AO, Santos MC (2014) Electrochim Acta 117:292–298

    Article  Google Scholar 

  11. Colmati F, Antolini E, Gonzalez ER (2005) Electrochim Acta 50:5496–5503

    Article  CAS  Google Scholar 

  12. Liu Z, Guo B, Hong L, Lim TH (2006) Electrochem Commun 8:83–90

    Article  CAS  Google Scholar 

  13. Aricò AS, Creti P, Antonucci PL, Antonucci V (1998) J Electrochem Soc 2:66–68

    Google Scholar 

  14. Lamy C, Belgsir EM, Léger JM (2001) J Appl Electrochem 31:799–809

    Article  CAS  Google Scholar 

  15. Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, Douvartzides S, Tsiakaras P (2005) J Power Souces 140:50–58

    Article  CAS  Google Scholar 

  16. Kowal A, Gojkovic SL, Lee K-S, Olszewski P, Sung Y-E (2009) Electrochem Commun 11:724–727

    Article  CAS  Google Scholar 

  17. Meenakshi S, Sridhar P, Pitchumani S (2014) RCS Adv 4:44386–44393

  18. Queiroz AC, Silva WO, Rodrigues IA, Lima FHB (2014) Appl Catal B Environ 160–161:423–435

    Article  Google Scholar 

  19. Na L, Zhao TS, Li YS (2015) Renew Sust Energ Rev 50:1462–1468

    Article  Google Scholar 

  20. Beyhan S, Coutanceau C, Leger J-M, Napporn TW, Kardirgan F (2013) Int J Hydrogen Energy 38:6830–6841

    Article  CAS  Google Scholar 

  21. Lee M, Hwang Y, Yun k-H, Chung Y-C (2015) J Power Sources 288:296–301

    Article  CAS  Google Scholar 

  22. Liu J, Zhao O, Chem S, Yi L, Wang X, Wei W (2015) Electrochim Acta 171:96–104

    Article  Google Scholar 

  23. Coleman EJ, Chowdhury MH, Co AC (2015) ACS Catal 5:1245–1253

    Article  CAS  Google Scholar 

  24. Carbonio EA, Colmati F, Ciapina EG, Pereira ME, Gonzalez ER (2010) J Braz Chem Soc 21:590–602

    Article  CAS  Google Scholar 

  25. Huang M, Jiang Y, Jin C, Ren J, Zhou Z, Guan L (2014) Electrochim Acta 125:29–37

    Article  CAS  Google Scholar 

  26. Magalhães MM, Colmati F (2014) J Braz Chem Soc 25:1317–1325

    Google Scholar 

  27. Colmati F, Antolini E, Gonzalez ER (2007) J Electrochem Soc 154:B39–B47

    Article  CAS  Google Scholar 

  28. Román-Martinez MC, Cazorla-Amorós D, Miguel S, Scelza O (2004) J Jpn Pet Inst 47:164–178

    Article  Google Scholar 

  29. Tripković AV, Popović KDJ, Lović JD (2001) Electrochim Acta 46:3163–3173

    Article  Google Scholar 

  30. Habibi B, Dadashpour (2013) Electrochim Acta 88:157–164

    Article  CAS  Google Scholar 

  31. Watanabe M, Motoo S (1975) J Electroanal Chem 60:275–279

    Article  CAS  Google Scholar 

  32. Lee C-G, Umeda M, Uchida I (2006) J Power Sources 160:78–89

    Article  CAS  Google Scholar 

  33. Li N-H, Sun S-G (1998) J Electroanal Chem 448:5–15

  34. Li N-H, Sun S-G (1997) J Electroanal Chem 436:65–72

    Article  CAS  Google Scholar 

  35. Colmati F, Antolini E, Gonzalez ER (2007) Appl Catal B Environ 73:106–115

    Article  CAS  Google Scholar 

  36. Liu L, Samjeské G, Takao S, Nagasawa K, Iwasawa Y (2014) J Power Souces 253:1–8

    Article  CAS  Google Scholar 

  37. Ascarelli P, Contini V, Giorgi R (2002) J Appl Phys 91:4556–4561

    Article  CAS  Google Scholar 

  38. Starz KA, Auer E, Lehmann T, Zuber R (1999) J Power Sources 84:167–172

    Article  CAS  Google Scholar 

  39. Antolini E, Colmati F, Gonzalez ER (2009) J Power Sources 193:555–561

    Article  CAS  Google Scholar 

  40. Jow J-J, Hsieh L-Y, Cho H-P, Chen H-R, Kuo C-W (2013) J Ind Eng Chem 19:1730–1734

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 554569/2010-8 and Proc. 475609/2008-5) for financial support as well as the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting our scholarship. We would also like to thank Tatiane Oliveira dos Santos from the Microscopy Laboratory (LABMIC) of the Federal University of Goiás, Goiânia, Brazil, for permitting the use of the microscope (a JEM-2010 HRTEM microscope, JEOL, Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Colmati.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest associated with this work.

Appendix

Appendix

As illustrated in Fig. 8, the alcohol oxidation current was relatively stable at 1800 s, except for isopropanol. This behavior can be attributed to differences in the adsorption of the alcohols on the electrode surface. Some studies have found that small and linear alcohols such as methanol and ethanol are adsorbed at a platinum electrode in an acidic medium via the α-carbon in the alcohol molecule. Propanol and butanol are also adsorbed in this manner, but the α-carbon is shielded by methyl groups in isopropanol, so only weak adsorption occurs on the Pt surface and the oxidation current does not stabilize within 1800 s. At this section, the scale of the y-axis of the graphics was not similar for all figures to emphasize the behavior of the curves with time once the current values are very different.

Fig. 8a–d
figure 8

Chronoamperometric curves (obtained at 0.3 V vs Ag / AgCl/Cl sat) for a methanol, b ethanol, c propanol, and d butanol on Pt3Sn/C, Pt3Cu/C, and Pt/C electrodes in 0.5 mol L−1H2SO4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis, R.G.C.S., Colmati, F. Electrochemical alcohol oxidation: a comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles. J Solid State Electrochem 20, 2559–2567 (2016). https://doi.org/10.1007/s10008-016-3323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3323-3

Keywords

Navigation