Skip to main content
Log in

Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Red phosphorus-carbon nanotube (P@CNT) composites were synthesized as anodes for advanced lithium ion batteries via a facile solution-based method at room temperature. In these composites, the entangled P@CNT nanostructure reduced the aggregation of both components and allowed their complete utilization in a synergetic manner. The highly conductive and porous CNT framework, along with the nanoscale red P particles intimately anchored on the CNT surface, conferred the composite with excellent ion/electron transport properties. Volume expansion within the red P particles was mitigated by their amorphous and nanoscale features, which can be well buffered by the soft CNTs, therefore maintaining an integrated electrode structure during cycling. When used as an anode in lithium ion batteries, the composite exhibited a reversible capacity of 960 mAh·g−1 (based on the overall weight of the composite) after 120 cycles at 200 mA·g−1. The composite also delivered excellent high-rate capability with capacities of 886, 847, and 784 mAh·g−1 at current densities of 2,000, 4,000, and 10,000 mA·g−1, respectively, which reveals its potential as a high performance anode for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  3. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  4. Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodiumion storage. Nano Lett. 2013, 13, 5480–5484.

    Article  Google Scholar 

  5. Gao, H.; Zhou, T. F.; Zheng, Y.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1601037.

    Article  Google Scholar 

  6. Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13, 346–349.

    Article  Google Scholar 

  7. Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/ carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

    Article  Google Scholar 

  8. Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

    Article  Google Scholar 

  9. Dahbi, M.; Yabuuchi, N.; Fukunishi, M.; Kubota, K.; Chihara, K.; Tokiwa, K.; Yu, X. F.; Ushiyama, H.; Yamashita, K.; Son, J. Y. et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: Investigation of the electrode/interface. Chem. Mater. 2016, 28, 1625–1635.

    Article  Google Scholar 

  10. Jin, W.; Wang, Z. G.; Fu, Y. Q. Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J. Mater. Sci. 2016, 51, 7355–7360.

    Article  Google Scholar 

  11. Chen, X. H.; Xu, G. H.; Ren, X. H.; Li, Z. J.; Qi, X.; Huang, K.; Zhang, H.; Huang, Z. Y.; Zhong, J. X. A black/red phosphorus hybrid as an electrode material for highperformance Li-ion batteries and supercapacitors. J. Mater. Chem. A 2017, 5, 6581–6588.

    Article  Google Scholar 

  12. Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. L.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.

    Article  Google Scholar 

  13. Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.

    Article  Google Scholar 

  14. Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

    Article  Google Scholar 

  15. Liu, D. H.; Lü, H. Y.; Wu, X. L.; Hou, B. H.; Wan, F.; Bao, S. D.; Yan, Q. Y.; Xie, H. M.; Wang, R. S. Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19738–19746.

    Article  Google Scholar 

  16. Liu, D. H.; Lü, H. Y.; Wu, X. L.; Wang, J.; Yan, X.; Zhang, J. P.; Geng, H. B.; Zhang, Y.; Yan, Q. Y. A new strategy for developing superior electrode materials for advanced batteries: Using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz. 2016, 1, 496–501.

    Article  Google Scholar 

  17. Wan, F.; Guo, J. Z.; Zhang, X. H.; Zhang, J. P.; Sun, H. Z.; Yan, Q. Y.; Han, D. X.; Niu, L.; Wu, X. L. In situ binding Sb nanospheres on graphene via oxygen bonds as superior anode for ultrafast sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 7790–7799.

    Article  Google Scholar 

  18. Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S. Red phosphorus single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015, 9, 3254–3264.

    Article  Google Scholar 

  19. Xu, Z. W.; Zeng, Y.; Wang, L. Y.; Li, N.; Chen, C.; Li, C. Y.; Li, J.; Lv, H. M.; Kuang, L. Y.; Tian, X. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. J. Power Sources 2017, 356, 18–26.

    Article  Google Scholar 

  20. Wu, X. L.; Guo, Y. G.; Su, J.; Xiong, J. W.; Zhang, Y. L.; Wan, L. J. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1155–1160.

    Article  Google Scholar 

  21. Yan, X.; Ye, H.; Wu, X. L.; Zheng, Y. P.; Wan, F.; Liu, M. K.; Zhang, X. H.; Zhang, J. P.; Guo, Y. G. Three-dimensional carbon nanotube networks enhanced sodium trimesic: A new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies. J. Mater. Chem. A 2017, 5, 16622–16629.

    Article  Google Scholar 

  22. Wang, L. Y.; Guo, H. L.; Wang, W.; Teng, K. Y.; Xu, Z. W.; Chen, C.; Li, C. Y.; Yang, C. Y.; Hu, C. S. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 211, 499–506.

    Article  Google Scholar 

  23. Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060.

    Article  Google Scholar 

  24. Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455–462.

    Article  Google Scholar 

  25. Wang, Y. L.; Tian, L. Y.; Yao, Z. H.; Li, F.; Li, S.; Ye, S. H. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim. Acta 2015, 163, 71–76.

    Article  Google Scholar 

  26. Li, J. Y.; Wang, L.; He, X. M.; Wang, J. L. Effect of pore size distribution of carbon matrix on the performance of phosphorus@carbon material as anode for lithium-ion batteries. ACS Sustainable Chem. Eng. 2016, 4, 4217–4223.

    Article  Google Scholar 

  27. Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblack multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.

    Article  Google Scholar 

  28. Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

    Article  Google Scholar 

  29. Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034–9037.

    Article  Google Scholar 

  30. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931–8933.

    Article  Google Scholar 

  31. Fan, Q.; Chupas, P. J.; Whittingham, M. S. Characterization of amorphous and crystalline tin-cobalt anodes. Electrochem. Solid-State Lett. 2007, 10, A274–A278.

    Article  Google Scholar 

  32. Yuan, D. M.; Cheng, J. L.; Qu, G. X.; Li, X. D.; Ni, W.; Wang, B.; Liu, H. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J. Power Sources 2016, 301, 131–137.

    Article  Google Scholar 

  33. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.

    Article  Google Scholar 

  34. Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X.; Ma, Y. Q.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F. et al. Red phosphorus nano-dots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano 2017, 11, 5530–5537.

    Article  Google Scholar 

  35. Yu, Z. X.; Song, J. X.; Gordin, M. L.; Yi, R.; Tang, D. H.; Wang, D. H. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.

    Article  Google Scholar 

  36. Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.

    Article  Google Scholar 

  37. Zaug, J. M.; Soper, A. K.; Clark, S. M. Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks. Nat. Mater. 2008, 7, 890–899.

    Article  Google Scholar 

  38. Xiao, H.; Xia, Y.; Gan, Y. P.; Huang, H.; Liang, C.; Tao, X. Y.; Xu, L. S.; Zhang, W. K. Facile fabrication of red phosphorus/TiO2 composites for lithium ion batteries. RSC Adv. 2014, 4, 60914–60919.

    Article  Google Scholar 

  39. Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H.; An, Y. L. A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1222–1233.

    Article  Google Scholar 

  40. Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphoruscarbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

    Article  Google Scholar 

  41. Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

    Article  Google Scholar 

  42. Lesel, B. K.; Ko, J. S.; Dunn, B.; Tolbert, S. H. Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 2016, 10, 7572–7581.

    Article  Google Scholar 

  43. Yang, L. C.; Li, X.; He, S. N.; Du, G. H.; Yu, X.; Liu, J. W.; Gao, Q. S.; Hu, R. Z.; Zhu, M. Mesoporous Mo2C/N-doped carbon heteronanowires as high-rate and long-life anode materials for Li-ion batteries. J. Mater. Chem. A 2016, 4, 10842–10849.

    Article  Google Scholar 

  44. Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 2017, 11, 3705–3715.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities of China (No. 2652015425) and the National Natural Science Foundation of China (No. 51572246).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Sun or Yihe Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Zhang, Y., Zhang, D. et al. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res. 11, 2733–2745 (2018). https://doi.org/10.1007/s12274-017-1903-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1903-x

Keywords

Navigation