Skip to main content
Log in

NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, porous NiO microspheres interconnected by carbon nanotubes (NiO/CNTs) were successfully fabricated by the pyrolysis of nickel metal-organic framework precursors with CNTs and evaluated as anode materials for lithium-ion batteries (LIBs). The structures, morphologies, and electrochemical performances of the samples were characterized by X-ray diffraction, N2 adsorption-desorption, field emission scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results show that the introduction of CNTs can improve the lithium-ion storage performance of NiO/CNT composites. Especially, NiO/CNTs-10 exhibits the highest reversible capacity of 812 mAh g−1 at 100 mA g−1 after 100 cycles. Even cycled at 2 A g−1, it still maintains a stable capacity of 502 mAh g−1 after 300 cycles. The excellent electrochemical performance of NiO/CNT composites should be attributed to the formation of 3D conductive network structure with porous NiO microspheres linked by CNTs, which benefits the electron transfer ability and the buffering of the volume expansion during the cycling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu J, Chen ZH, Ma ZF, Pan F, Curtiss LA, Amine K (2010) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotech 11:1031–1038

    Article  Google Scholar 

  2. Hameer S, Niekerk JL (2015) A review of large-scale electrical energy storage. Int J Energy Res 39:1179–1195

    Article  Google Scholar 

  3. Peters JF, Baumann M, Zimmermann B, Braun J, Weil M (2017) The environmental impact of Li-ion batteries and the role of key parameters—a review. Renew Sust Energ Rev 67:491–506

    Article  CAS  Google Scholar 

  4. Guo BK, Wang XQ, Fulvio PF, Chi MF, Mahurin SM, Sun XG, Dai S (2011) Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater 23:4661–4666

    Article  CAS  Google Scholar 

  5. Wu ZS, Zhou GM, Yin LC, Ren WC, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  6. Li Q, Huang G, Yin DM, Wu YM, Wang LM (2016) Synthesis of porous NiO nanorods as high-performance anode materials for lithium-ion batteries. Part Part Syst Charact 33:764–770

    Article  CAS  Google Scholar 

  7. Mollamahale YB, Liu Z, Zhen YD, Tian ZQ, Hosseini D, Chen LW, Shen PK (2016) Simple fabrication of porous NiO nanoflowers: growth mechanism, shape evolution and their application into Li-ion batteries. Int J Hydrog Energy 42:7202–7211

    Article  Google Scholar 

  8. Zhang Z, Chu QX, Li HY, Hao JH, Yang WS, Lu BP, Ke X, Li J, Tang JL (2013) One-pot solvothermal synthesis of graphene-supported TiO2 (B) nanosheets with enhanced lithium storage properties. J Colloid Interface Sci 409:38–42

    Article  CAS  Google Scholar 

  9. Chen FS, Liu XH, Zhang ZA, Zhang N, Pan AQ, Liang SQ, Ma RZ (2016) Controllable fabrication of urchin-like Co3O4 hollow spheres for high-performance supercapacitors and lithium-ion batteries. Dalton Trans 45:15155–15161

    Article  CAS  Google Scholar 

  10. Zhao ZW, Wen T, Liang K, Jiang YF, Zhou X, Shen CC, Xu AW (2017) Carbon-coated Fe3O4/VOx hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 9:3757–3765

    Article  CAS  Google Scholar 

  11. Jun Z, Chen JJ, Zhang CL, Qian H, Zheng MS, Dong QF (2014) The synthesis of a core–shell MnO2/3D-ordered hollow carbon sphere composite and its superior electrochemical capability for lithium ion batteries. J Mater Chem A 2:6343–6347

    Article  Google Scholar 

  12. Flügel EA, Ranft A, Haase F, Lotsch BV (2012) Synthetic routes toward MOF nanomorphologies. J Mater Chem 22:10119–10133

    Article  Google Scholar 

  13. Li SZ, Huo FW (2015) Metal-organic framework composites: from fundamentals to applications. Nano 7:7482–7501

    CAS  Google Scholar 

  14. Wu RB, Qian XK, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8:6297–6303

    Article  CAS  Google Scholar 

  15. Banerjee A, Aravindan V, Bhatnagar S, Mhamane D, Madhavi S, Ogale S (2013) Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy 2:890–896

    Article  CAS  Google Scholar 

  16. Guo ZG, Cheng JK, Hu ZG, Zhang M, Xu Q, Kang ZX, Zhao D (2014) Metal-organic frameworks (MOFs) as precursors towards TiOx/C composites for photodegradation of organic dye. RSC Adv 4:34221–34225

    Article  CAS  Google Scholar 

  17. DeKrafft KE, Wang C, Lin WB (2012) Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv Mater 24:2014–2018

    Article  CAS  Google Scholar 

  18. Liu JJ, Yang Y, Zhu WW, Yi X, Dong ZL, Xu XN, Chen MW, Yang K, Lu G, Jiang LX, Liu Z (2016) Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 97:1–9

    Article  CAS  Google Scholar 

  19. Meng WJ, Chen W, Zhao L, Huang Y, Zhu MS, Huang Y, Fu YQ, Geng FX, Yu J, Chen XF, Zhi CY (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140

    Article  CAS  Google Scholar 

  20. Li GC, Liu PF, Liu R, Liu M, Tao K, Zhu SR, Wu MK, Yi FY, Han L (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans 45:13311–13316

    Article  CAS  Google Scholar 

  21. Yue HY, Shi ZP, Wang QX, Cao ZX, Dong HY, Qiao Y, Yin YH, Yang ST (2014) MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:17067–17074

    Article  CAS  Google Scholar 

  22. Guo WX, Sun WW, Lv LP, Kong SF, Wang Y (2017) Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11:4198–4205

    Article  CAS  Google Scholar 

  23. Wang BB, Wang G, Cheng XM, Wang H (2016) Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem Eng J 306:1193–1202

    Article  CAS  Google Scholar 

  24. Xu X, Tan H, Xi K, Ding SJ, Yu DM, Cheng SD, Yang G, Peng XY, Fakeeh A, Kumar RV (2015) Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life. Carbon 84:491–499

    Article  CAS  Google Scholar 

  25. Zou F, Chen YM, Liu KW, Yu ZT, Liang WF, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10:377–386

    Article  CAS  Google Scholar 

  26. Zhang F, Jiang DG, Zhang XG (2016) Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode. Nano-Struct Nano-Objects 5:1–6

    Article  Google Scholar 

  27. Wu HJ, Wang YQ, Zheng CH, Zhu JM, Wu GL, Li XH (2016) Multi-shelled NiO hollow spheres: easy hydrothermal synthesis and lithium storage performances. J Alloys Compd 685:8–14

    Article  CAS  Google Scholar 

  28. Jang JH, Chae BM, Oh HJ, Lee YK (2016) Understanding conversion mechanism of NiO anodic materials for Li-ion battery using in situ X-ray absorption near edge structure spectroscopy. J Power Sources 304:189–195

    Article  CAS  Google Scholar 

  29. Fan XY, Li SH, Cui Y, Lu L, Zhou CF, Liu ZW (2016) Fe3O4/rice husk-based maco-/mesoporous carbon bone nanocomposite as superior high-rate anode for lithium ion battery. J Solid State Electrochem 21:27–34

    Article  Google Scholar 

  30. Luo SS, Xu S, Zhang YH, Liu JY, Wang SQ, He PX (2016) Preparation of MnO2 and MnO2/carbon nanotubes nanocomposites with improved electrochemical performance for lithium ion batteries. J Solid State Electrochem 20:2045–2053

    Article  CAS  Google Scholar 

  31. Brisbois M, Caes S, Sougrati MT, Vertruyen B, Schrijnemakers A, Cloots R, Eshraghi N, Hermann RP, Mahmoud A, Boschini F (2016) Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: Operando Mössbauer study of spray-dried composites. Sol Energy Mater Sol Cells 148:67–72

    Article  CAS  Google Scholar 

  32. Cheng JL, Wang B, Park CM, Wu YP, Huang H, Nie FD (2013) CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior. Chem Eur J 19:9866–9874

    Article  CAS  Google Scholar 

  33. Mahmoud A, Caes S, Brisbois M, Hermann RP, Berardo L, Schrijnemakers A, Malherbe C, Eppe G, Cloots R, Vertruyen B, Boschini V (2017) Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution. J Solid State Electrochem. https://doi.org/10.1007/s10008-017-3717-x

  34. Huang G, Zhang FF, Du XC, Qin YL, Yin DG, Wang LM (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599

    Article  CAS  Google Scholar 

  35. Zou YL, Qi ZG, Ma ZS, Jiang WJ, Hu RW, Duan JL (2017) MOF-derived porous ZnO/MWCNTs nanocomposite as anode materials for lithium-ion batteries. J Electroanal Chem 788:184–191

    Article  CAS  Google Scholar 

  36. Abbas SM, Hussain ST, Ali S, Ahmad N, Ali N, Munawar KS (2013) Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim Acta 105:481–488

    Article  CAS  Google Scholar 

  37. Liu Y, Qiao Y, Zhang WX, Li Z, Hu XL, Yuan LX, Huang YH (2012) Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. J Mater Chem 22:24026–24033

    Article  CAS  Google Scholar 

  38. Xu XT, Wang M, Liu Y, Lu T, Pan LK (2016) Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J Mater Chem A 4:5467–5473

    Article  CAS  Google Scholar 

  39. Pang HC, Guan BQ, Sun WW, Wang Y (2016) Metal-organic-frameworks derivation of mesoporous NiO nanorod for high-performance lithium ion batteries. Electrochim Acta 213:351–357

    Article  CAS  Google Scholar 

  40. Chen TQ, Pan LK, Liu XJ, Sun Z (2013) A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries. Mater Chem Phys 142:345–349

    Article  CAS  Google Scholar 

  41. Vogt C, Knowles GP, Chang SL, Chaffee AL (2013) Cadmium oxide/alkali metal halide mixtures—a potential high capacity sorbent for pre-combustion CO2 capture. J Mater Chem A 1:10962–10971

    Article  CAS  Google Scholar 

  42. Gou L, Liu PG, Liu D, Wang CY, Lei HY, Li ZY, Fan XY, Li DL (2017) Rational synthesis of Ni3(HCOO)6/CNT ellipsoids with enhanced lithium storage performance: inspired by the time evolution of the growth process of a nickel formate framework. Dalton Trans 46:6473–6482

    Article  CAS  Google Scholar 

  43. Zhou G, Zhu J, Chen YJ, Mei L, Duan XC, Zhang GH, Chen LB, Wang TH, Lu BG (2014) Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim Acta 123:450–455

    Article  CAS  Google Scholar 

  44. Li GD, Han RM, Xu XY, Ren MM (2016) Facile synthesis of Mn-doped hollow Fe2O3 nanospheres coated with polypyrrole as anodes for high-performance lithium-ion batteries. RSC Adv 6:48199–48204

    Article  CAS  Google Scholar 

  45. Cao W, Hu AP, Chen XH, Liu XH, Liu P, Tang QL, Zhao XS (2016) NiO hollow microspheres interconnected by carbon nanotubes as an anode for lithium ion batteries. Electrochim Acta 213:75–82

    Article  CAS  Google Scholar 

  46. Liu WW, Lu CX, Wang XL, Liang K, Tay BK (2015) In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J Mater Chem A 3:624–633

    Article  CAS  Google Scholar 

  47. Xu LL, Lu BG (2016) 3D-frame structure NiO@CNTs for ultrafast charge slow discharge lithium ion batteries. Electrochim Acta 210:456–461

    Article  CAS  Google Scholar 

  48. Sun XL, Yan CL, Chen Y, Si WP, Deng JW, Oswald S, Liu LF, Schmidt OG (2014) Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv Energy Mater 4:1300912

    Article  Google Scholar 

  49. Liang J, Hu H, Park H, Xiao CH, Ding SJ, Paik U, Lou XW (2015) Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ Sci 8:1707–1711

    Article  CAS  Google Scholar 

  50. Mao WF, Ai G, Dai YL, Fu YB, Ma Y, Shi SW, Soe R, Zhang XH, Qu DY, Tang ZY, Battaglia VS (2016) In-situ synthesis of MnO2@CNT microsphere composites with enhanced electrochemical performances for lithium-ion batteries. J Power Sources 310:54–60

    Article  CAS  Google Scholar 

  51. Chen MH, Liu JL, Chao DL, Wang J, Yin JH, Lin JY, Fan HJ, Shen ZX (2014) Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372

    Article  CAS  Google Scholar 

  52. Eshraghi N, Caes S, Mahmoud A, Cloots R, Vertruyen B, Boschini F (2017) Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles. Electrochim Acta 228:319–324

    Article  CAS  Google Scholar 

  53. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  54. Qi H, Cao LY, Li JY, Huang JF, Xu ZW, Cheng YY, Kong XG, Yanagisawa K (2016) High pseudocapacitance in FeOOH/rGO composites with superior performance for high rate anode in Li-ion battery. ACS Appl Mater Interfaces 8:35253–35263

    Article  CAS  Google Scholar 

  55. Zhang J, Zhang W, He T, Amiinu IS, Kou ZK, Li JN, Mu SC (2017) Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. Carbon 115:95–104

    Article  CAS  Google Scholar 

  56. Zhu Y, Peng LL, Chen DH, Yu GH (2016) Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett 16:742–747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Basic Research Project of Shanghai Science and Technology Committee (NSSo. 14JC1491000), Key Project of National Natural Science Foundation of China (No. 61231003), and CAS Interdisciplinary Innovation Team is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lu.

Electronic supplementary material

ESM 1

(DOCX 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Hou, S., Yang, G. et al. NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries. J Solid State Electrochem 22, 785–795 (2018). https://doi.org/10.1007/s10008-017-3811-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3811-0

Keywords

Navigation