Skip to main content
Log in

Three-dimensional macroscale assembly of Pd nanoclusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Construction of macro-materials with highly oriented microstructures and well-connected interfaces between building blocks is significant for a variety of applications. However, it is still challenging to confine the desired structures. Thus, well-defined building blocks would be crucial to address this issue. Herein, we present a facile process based on 1.8 nm Pd nanoclusters (NCs) to achieve centimeter-size assemblages with aligned honeycomb structures, where the diameter of a single tubular moiety is ∼4 μm. Layered and disordered porous assemblages were also obtained by modulating the temperature in this system. The reconciled interactions between the NCs were crucial to the assemblages. As a comparison, 14 nm Pd nanoparticles formed only aggregates. This work highlights the approach of confining the size of the building blocks in order to better control the assembly process and improve the stability of the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deville, S. Freeze-casting of porous biomaterials: Structure, properties and opportunities. Materials 2010, 3, 1913–1927.

    Article  Google Scholar 

  2. Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

    Article  Google Scholar 

  3. Chen, Y.; Shi, J. L. Mesoporous carbon biomaterials. Sci. China Mater. 2015, 58, 241–257.

    Article  Google Scholar 

  4. Yang, S. Y.; Ryu, I.; Kim, H. Y.; Kim, J. K.; Jang, S. K.; Russell, T. P. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 2006, 18, 709–712.

    Article  Google Scholar 

  5. Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Superelastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

    Article  Google Scholar 

  6. Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

    Article  Google Scholar 

  7. Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a path to build complex composites. Science 2006, 311, 515–518.

    Article  Google Scholar 

  8. Yan, F.; Ding, A. L.; Gironès, M.; Lammertink, R. G. H.; Wessling, M.; Börger, L.; Vilsmeier, K.; Goedel, W. A. Hierarchically structured assembly of polymer microsieves, made by a combination of phase separation micromolding and float-casting. Adv. Mater. 2012, 24, 1551–1557.

    Article  Google Scholar 

  9. Fu, Q.; Rahaman, M. N.; Dogan, F.; Bal, B. S. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J. Biomed. Mater. Res. B. Appl. Biomater. 2008, 86B, 125–135.

    Article  Google Scholar 

  10. Li, J. J.; Seok, S. I.; Chu, B. J.; Dogan, F.; Zhang, Q. M.; Wang, Q. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv. Mater. 2009, 21, 217–221.

    Article  Google Scholar 

  11. Han, L. N.; Ye, T. N.; Lv, L. B.; Wang, K. X.; Wei, X.; Li, X. H.; Chen, J. S. Supramolecular nano-assemblies with tailorable surfaces: Recyclable hard templates for engineering hollow nanocatalysts. Sci. China Mater. 2014, 57, 7–12.

    Article  Google Scholar 

  12. Desvaux, C.; Amiens, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B. Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles. Nat. Mater. 2005, 4, 750–753.

    Article  Google Scholar 

  13. Fu, Q.; Ran, G. J.; Xu, W. L. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Res. 2016, 9, 3247–3256.

    Article  Google Scholar 

  14. Ni, B.; Wang, X. Chemistry and properties at a sub-nanometer scale. Chem. Sci. 2016, 7, 3978–3991.

    Article  Google Scholar 

  15. Wang, C. Y.; Siu, C.; Zhang, J.; Fang, J. Y. Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals. Nano Res. 2015, 8, 2445–2466.

    Article  Google Scholar 

  16. Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.

    Article  Google Scholar 

  17. MacLachlan, M. J.; Manners, I.; Ozin, G. A. New(inter) faces: Polymers and inorganic materials. Adv. Mater. 2000, 12, 675–681.

    Article  Google Scholar 

  18. Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem., Int. Ed. 2014, 53, 4561–4566.

    Article  Google Scholar 

  19. Butler, M. F. Instability formation and directional dendritic growth of ice studied by optical interferometry. Cryst. Growth Des. 2001, 1, 213–223.

    Article  Google Scholar 

  20. Butler, M. F. Growth of solutal ice dendrites studied by optical interferometry. Cryst. Growth Des. 2002, 2, 59–66.

    Article  Google Scholar 

  21. Butler, M. F. Freeze concentration of solutes at the ice/solution interface studied by optical interferometry. Cryst. Growth Des. 2002, 2, 541–548.

    Article  Google Scholar 

  22. Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 2008, 10, 155–169.

    Article  Google Scholar 

  23. Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4, 787–793.

    Article  Google Scholar 

  24. Nyström, G.; Fernández-Ronco, M. P.; Bolisetty, S.; Mazzotti, M.; Mezzenga, R. Amyloid templated gold aerogels. Adv. Mater. 2016, 28, 472–478.

    Article  Google Scholar 

  25. Hu, S.; Liu, H. L.; Wang, P. P.; Wang, X. Inorganic nanostructures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115–11124.

    Article  Google Scholar 

  26. Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

    Article  Google Scholar 

  27. Wang, P. P.; Yang, Y.; Zhuang, J.; Wang, X. Self-adjustable crystalline inorganic nanocoils. J. Am. Chem. Soc. 2013, 135, 6834–6837.

    Article  Google Scholar 

  28. Li, W. L.; Lu, K.; Walz, J. Y. Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 2012, 57, 37–60.

    Article  Google Scholar 

  29. Wang, Q.; Jia, W. J.; Liu, B. C.; Dong, A.; Gong, X.; Li, C. Y.; Jing, P.; Li, Y. J.; Xu, G. R.; Zhang, J. Hierarchical structure based on Pd (Au) nanoparticles grafted onto magnetite cores and double layered shells: Enhanced activity for catalytic applications. J. Mater. Chem. A 2013, 1, 12732–12741.

    Article  Google Scholar 

  30. Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

    Article  Google Scholar 

  31. Higuchi, K.; Yamamoto, K.; Kajioka, H.; Toiyama, K.; Honda, M.; Orimo, S.; Fujii, H. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J. Alloys Compd. 2002, 330–332, 526–530.

    Article  Google Scholar 

  32. Gu, X. J.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. Synergistic catalysis of metal–organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822–11825.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21431003 and 21521091) and China Ministry of Science and Technology under contract of 2016YFA0202801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Lin, H., Ni, B. et al. Three-dimensional macroscale assembly of Pd nanoclusters. Nano Res. 11, 3175–3181 (2018). https://doi.org/10.1007/s12274-017-1723-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1723-z

Keywords

Navigation