Skip to main content

C60 Fullerene Amphiphiles as Supramolecular Building Blocks for Organized and Well-Defined Nanoscale Objects

  • Chapter
  • First Online:
Fullerenes and Other Carbon-Rich Nanostructures

Part of the book series: Structure and Bonding ((STRUCTURE,volume 159))

Abstract

Fullerene-based nanomaterials have attracted extensive interest owing to their wide-ranging applications in materials science, nanotechnology, and biomedical research. This chapter gives an updated review of the recent advance in the design and characterization of fullerene derivatives as supramolecular building blocks for ordered and well-defined nanostructures and objects. The discussions are specially concentrated on the structural and morphological properties of discrete nano-aggregates by various amphiphilic fullerene derivatives formed in solution or at interfaces. Rationalization of the aggregation structure and morphology is attempted on the basis of amphiphilic molecular packing theories so as to shed light on the interplay between molecular factors (e.g., shape, polarity, non-covalent forces, and amphiphilicity) and self-assembly outcomes. Overall, this literature survey is aimed at mapping out applicable “bottom-up” strategies to control and preprogram the nanoscopic ordering of fullerene-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kroto HW, Walton DRM (1993) The fullerenes: new horizons for the chemistry, physics and astrophysics of carbon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Guldi DM, Martin N (2002) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  3. Osawa E (2002) Perspectives of fullerene nanotechnology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  4. Langa F, Nierengarten JF (2007) Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  5. Taylor R (1999) Lecture notes on fullerene chemistry: a handbook for chemists. Imperial College Press, London

    Book  Google Scholar 

  6. Hirsch A, Brettreich M (2005) Fullerenes: chemistry and reactions. Wiley-VCH, Weinheim

    Google Scholar 

  7. Martin N, Altable M, Filippone S, Martin-Domenech A (2007) New reactions in fullerene chemistry. Synlett 20:3077–3095

    Article  Google Scholar 

  8. Diederich F, Gomez-Lopez M (1999) Supramolecular fullerene chemistry. Chem Soc Rev 28(5):263–277

    Article  CAS  Google Scholar 

  9. Bonifazi D, Enger O, Diederich F (2007) Supramolecular [60]fullerene chemistry on surfaces. Chem Soc Rev 36(2):390–414

    Article  CAS  Google Scholar 

  10. Hahn U, Cardinali F, Nierengarten JF (2007) Supramolecular chemistry for the self-assembly of fullerene-rich dendrimers. New J Chem 31(7):1128–1138

    Article  CAS  Google Scholar 

  11. Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res 36(11):807–815

    Article  CAS  Google Scholar 

  12. Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Badt D, Schindler H, Sariciftci NS (2001) The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth Met 118(1–3):1–9

    Article  CAS  Google Scholar 

  13. Brabec CJ, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummelen JC, Sariciftci NS (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340(3–4):232–236

    Article  CAS  Google Scholar 

  14. Park LY, Munro AM, Ginger DS (2008) Controlling film morphology in conjugated polymer: fullerene blends with surface patterning. J Am Chem Soc 130(47):15916–15926

    Article  CAS  Google Scholar 

  15. Sivula K, Ball ZT, Watanabe N, Fréchet JMJ (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv Mater 18(2):206–210

    Article  CAS  Google Scholar 

  16. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat Mater 7(2):158–164

    Article  CAS  Google Scholar 

  17. Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61

    Article  CAS  Google Scholar 

  18. Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14(10):1005–1011

    Article  CAS  Google Scholar 

  19. Isobe H, Nakanishi W, Tomita N, Jinno S, Okayama H, Nakamura E (2005) Nonviral gene delivery by tetraamino fullerene. Mol Pharm 3(2):124–134

    Article  Google Scholar 

  20. Maeda-Mamiya R, Noiri E, Isobe H, Nakanishi W, Okamoto K, Doi K, Sugaya T, Izumi T, Homma T, Nakamura E (2010) In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci USA 107(12):5339–5344

    Google Scholar 

  21. Han B, Karim MN (2008) Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells. Scanning 30(2):213–220

    Article  CAS  Google Scholar 

  22. Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ros-independent protein oxidation. Environ Sci Technol 42(21):8127–8132

    Article  CAS  Google Scholar 

  23. Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ros-mediated damage. Nano Lett 8(5):1539–1543

    Article  CAS  Google Scholar 

  24. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4(10):1881–1887

    Article  CAS  Google Scholar 

  25. Kadish KM, Ruoff RS (2000) Fullerenes: chemistry, physics, and technology. Wiley, New York

    Google Scholar 

  26. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of fullerene (C60) in a variety of solvents. J Phys Chem 97(13):3379–3383

    Article  CAS  Google Scholar 

  27. Brant JA, Labille J, Bottero J-Y, Wiesner MR (2006) Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22(8):3878–3885

    Article  CAS  Google Scholar 

  28. Alargova RG, Deguchi S, Tsujii K (2001) Stable colloidal dispersions of fullerenes in polar organic solvents. J Am Chem Soc 123(43):10460–10467

    Article  CAS  Google Scholar 

  29. Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22(26):10994–11001

    Article  CAS  Google Scholar 

  30. Ariga K, Nakanishi T, Hill JP (2007) Self-assembled microstructures of functional molecules. Curr Opin Coll Inter Sci 12(3):106–120

    Article  CAS  Google Scholar 

  31. Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105(4):1401–1444

    Article  CAS  Google Scholar 

  32. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005) About supramolecular assemblies of π-conjugated systems. Chem Rev 105(4):1491–1546

    Article  CAS  Google Scholar 

  33. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437(7059):640–647

    Article  CAS  Google Scholar 

  34. Tsonchev S, Schatz GC, Ratner MA (2003) Hydrophobically-driven self-assembly: a geometric packing analysis. Nano Lett 3(5):623–626

    Article  CAS  Google Scholar 

  35. Tsonchev S, Troisi A, Schatz GC, Ratner MA (2004) On the structure and stability of self-assembled zwitterionic peptide amphiphiles: a theoretical study. Nano Lett 4(3):427–431

    Article  CAS  Google Scholar 

  36. Tsonchev S, Troisi A, Schatz GC, Ratner MA (2004) All-atom numerical studies of self-assembly of zwitterionic peptide amphiphiles. J Phys Chem B 108(39):15278–15284

    Article  CAS  Google Scholar 

  37. Tsonchev S, Schatz GC, Ratner MA (2004) Electrostatically-directed self-assembly of cylindrical peptide amphiphile nanostructures. J Phys Chem B 108(26):8817–8822

    Article  CAS  Google Scholar 

  38. Velichko YS, Stupp SI, de la Cruz MO (2008) Molecular simulation study of peptide amphiphile self-assembly. J Phys Chem B 112(8):2326–2334

    Article  CAS  Google Scholar 

  39. Guldi DM, Zerbetto F, Georgakilas V, Prato M (2005) Ordering fullerene materials at nanometer dimensions. Acc Chem Res 38(1):38–43

    Article  CAS  Google Scholar 

  40. Cassell AM, Asplund CL, Tour JM (1999) Self-assembling supramolecular nanostructures from a C60 derivative: nanorods and vesicles. Angew Chem Int Ed 38(16):2403–2405

    Article  CAS  Google Scholar 

  41. Nakashima N, Ishii T, Shirakusa M, Nakanishi T, Murakami H, Sagara T (2001) Molecular bilayer-based superstructures of a fullerene-carrying ammonium amphiphile: structure and electrochemistry. Chem Eur J 7(8):1766–1772

    Article  CAS  Google Scholar 

  42. Georgakilas V, Pellarini F, Prato M, Guldi DM, Melle-Franco M, Zerbetto F (2002) Supramolecular self-assembled fullerene nanostructures. Proc Natl Acad Sci USA 99(8):5075–5080

    Article  CAS  Google Scholar 

  43. Angelini G, De Maria P, Fontana A, Pierini M, Maggini M, Gasparrini F, Zappia G (2001) Study of the aggregation properties of a novel amphiphilic C60 fullerene derivative. Langmuir 17(21):6404–6407

    Article  CAS  Google Scholar 

  44. Brough P, Bonifazi D, Prato M (2006) Self-organization of amphiphilic [60]fullerene derivatives in nanorod-like morphologies. Tetrahedron 62(9):2110–2114

    Article  CAS  Google Scholar 

  45. Fuhrhop J-H, Wang T (2004) Bolaamphiphiles. Chem Rev 104(6):2901–2938

    Article  CAS  Google Scholar 

  46. Sano M, Oishi K, Ishi-i T, Shinkai S (2000) Vesicle formation and its fractal distribution by bola-amphiphilic [60]fullerene. Langmuir 16(8):3773–3776

    Article  CAS  Google Scholar 

  47. Guldi DM, Gouloumis A, Vázquez P, Torres T, Georgakilas V, Prato M (2005) Nanoscale organization of a phthalocyanine−fullerene system: remarkable stabilization of charges in photoactive 1-d nanotubules. J Am Chem Soc 127(16):5811–5813

    Article  CAS  Google Scholar 

  48. Angelini G, Cusan C, De Maria P, Fontana A, Maggini M, Pierini M, Prato M, Schergna S, Villani C (2005) The associative properties of some amphiphilic fullerene derivatives. Eur J Org Chem 2005(9):1884–1891

    Article  Google Scholar 

  49. Guldi DM, Maggini M, Mondini S, Guérin F, Fendler JH (1999) Formation, characterization, and properties of nanostructured [Ru(bpy)3]2+-C60 langmuir−blodgett films in situ at the air−water interface and ex situ on substrates. Langmuir 16(3):1311–1318

    Article  Google Scholar 

  50. Guldi DM, Luo C, Koktysh D, Kotov NA, Da Ros T, Bosi S, Prato M (2002) Photoactive nanowires in fullerene−ferrocene dyad polyelectrolyte multilayers. Nano Lett 2(7):775–780

    Article  CAS  Google Scholar 

  51. Chuard T, Deschenaux R (1996) First fullerene[60]-containing thermotropic liquid crystal. Preliminary communication. Helv Chim Acta 79(3):736–741

    Article  CAS  Google Scholar 

  52. Murakami H, Watanabe Y, Nakashima N (1996) Fullerene lipid chemistry: self-organized multibilayer films of a C60-bearing lipid with main and subphase transitions. J Am Chem Soc 118(18):4484–4485

    Article  CAS  Google Scholar 

  53. Chuard T, Deschenaux R (2002) Design, mesomorphic properties, and supramolecular organization of [60]fullerene-containing thermotropic liquid crystals J Mater Chem 12:1944–1951

    Google Scholar 

  54. Lenoble J, Campidelli S, Maringa N, Donnio B, Guillon D, Yevlampieva N, Deschenaux R (2007) Liquid−crystalline janus-type fullerodendrimers displaying tunable smectic−columnar mesomorphism. J Am Chem Soc 129(32):9941–9952

    Article  CAS  Google Scholar 

  55. Li W-S, Yamamoto Y, Fukushima T, Saeki A, Seki S, Tagawa S, Masunaga H, Sasaki S, Takata M, Aida T (2008) Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: photoconductive liquid crystalline oligothiophene−C60 dyads. J Am Chem Soc 130(28):8886–8887

    Article  CAS  Google Scholar 

  56. Campidelli S, Bourgun P, Guintchin B, Furrer J, Stoeckli-Evans H, Saez IM, Goodby JW, Deschenaux R (2010) Diastereoisomerically pure fulleropyrrolidines as chiral platforms for the design of optically active liquid crystals. J Am Chem Soc 132(10):3574–3581

    Article  CAS  Google Scholar 

  57. Nakanishi T, Schmitt W, Michinobu T, Kurth DG, Ariga K (2005) Hierarchical supramolecular fullerene architectures with controlled dimensionality. Chem Commun 5982–5984

    Google Scholar 

  58. Nakanishi T, Ariga K, Michinobu T, Yoshida K, Takahashi H, Teranishi T, Möhwald H, Kurth DG (2007) Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. Small 3(12):2019–2023

    Article  CAS  Google Scholar 

  59. Nakanishi T, Michinobu T, Yoshida K, Shirahata N, Ariga K, Möhwald H, Kurth DG (2008) Nanocarbon superhydrophobic surfaces created from fullerene-based hierarchical supramolecular assemblies. Adv Mater 20(3):443–446

    Article  CAS  Google Scholar 

  60. Shen Y, Skirtach AG, Seki T, Yagai S, Li H, Möhwald H, Nakanishi T (2010) Assembly of fullerene-carbon nanotubes: temperature indicator for photothermal conversion. J Am Chem Soc 132 (25):8566–8568

    Google Scholar 

  61. Tomalia DA (2010) Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 6:456–474

    Article  CAS  Google Scholar 

  62. Fréchet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Wiley, Chichester

    Book  Google Scholar 

  63. Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons: concepts, syntheses, applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  64. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev 109(11):6275–6540

    Article  CAS  Google Scholar 

  65. Nierengarten J-F (2000) Fullerodendrimers: a new class of compounds for supramolecular chemistry and materials science applications. Chem Eur J 6(20):3667–3670

    Article  CAS  Google Scholar 

  66. Nierengarten JF (2004) Chemical modification of C60 for materials science applications. New J Chem 28:1177–1191

    Article  CAS  Google Scholar 

  67. Arai T, Ogawa J, Mouri E, Bhuiyan MPI, Nishino N (2006) Formation of submicron scale particles of narrow size distribution from a water-soluble dendrimer with links to porphyrins and a fullerene. Macromolecules 39(4):1607–1613

    Article  CAS  Google Scholar 

  68. Fernández G, Pérez EM, Sánchez L, Martín N (2008) An electroactive dynamically polydisperse supramolecular dendrimer. J Am Chem Soc 130(8):2410–2411

    Article  Google Scholar 

  69. Mahmud IM, Zhou N, Wang L, Zhao Y (2008) Triazole-linked dendro[60]fullerenes: modular synthesis via a “click” reaction and acidity-dependent self-assembly on the surface. Tetrahedron 64(50):11420–11432

    Article  CAS  Google Scholar 

  70. Matsuo Y, Muramatsu A, Hamasaki R, Mizoshita N, Kato T, Nakamura E (2003) Stacking of molecules possessing a fullerene apex and a cup-shaped cavity connected by a silicon connection. J Am Chem Soc 126(2):432–433

    Article  Google Scholar 

  71. Kato H, Böttcher C, Hirsch A (2007) Sugar balls: Synthesis and supramolecular assembly of [60]fullerene glycoconjugates. Eur J Org Chem 16:2659–2666

    Article  Google Scholar 

  72. Liu B, Yang M, Zhang Z, Zhang G, Han Y, Xia N, Hu M, Zheng P, Wang W (2010) Ribbonlike assembly of molecules composed of fulleropyrrolidine and PUA dendron. Langmuir 26(12):9403–9407

    Article  CAS  Google Scholar 

  73. Sawamura M, Iikura H, Nakamura E (1996) The first pentahaptofullerene metal complexes. J Am Chem Soc 118(50):12850–12851

    Article  CAS  Google Scholar 

  74. Zhong Y-W, Matsuo Y, Nakamura E (2006) Convergent synthesis of a polyfunctionalized fullerene by regioselective five-fold addition of a functionalized organocopper reagent to C60. Org Lett 8(7):1463–1466

    Article  CAS  Google Scholar 

  75. Sawamura M, Nagahama N, Toganoh M, Nakamura E (2002) Regioselective penta-addition of 1-alkenyl copper reagent to [60]fullerene. Synthesis of penta-alkenyl FCp ligand. J Organomet Chem 652(1–2):31–35

    Article  CAS  Google Scholar 

  76. Sawamura M, Nagahama N, Toganoh M, Hackler UE, Isobe H, Nakamura E, Zhou S-Q, Chu B (2000) Pentaorgano[60]fullerene R5C60 . A water soluble hydrocarbon anion. Chem Lett 1098–1099

    Google Scholar 

  77. Zhou S, Burger C, Chu B, Sawamura M, Nagahama N, Toganoh M, Hackler UE, Isobe H, Nakamura E (2001) Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light scattering study. Science 291(5510):1944–1947

    Article  CAS  Google Scholar 

  78. Homma T, Harano K, Isobe H, Nakamura E (2010) Nanometer-sized fluorous fullerene vesicles in water and on solid surfaces. Angew Chem Int Ed 49:1665–1668

    Article  CAS  Google Scholar 

  79. Burger C, Hao J, Ying Q, Isobe H, Sawamura M, Nakamura E, Chu B (2004) Multilayer vesicles and vesicle clusters formed by the fullerene-based surfactant C60(CH3)5K. J Colloid Interface Sci 275(2):632–641

    Article  CAS  Google Scholar 

  80. Cardullo F, Diederich F, Echegoyen L, Habicher T, Jayaraman N, Leblanc RM, Stoddart JF, Wang S (1998) Stable langmuir and langmuir−blodgett films of fullerene−glycodendron conjugates. Langmuir 14(8):1955–1959

    Article  CAS  Google Scholar 

  81. Felder D, del Pilar Carreon M, Gallani J-L, Guillon D, Nierengarten J-F, Chuard T, Deschenaux R (2001) Amphiphilic fullerene-cholesterol derivatives: synthesis and preparation of Langmuir and Langmuir–Blodgett films. Helv Chim Acta 84(5):1119–1132

    Article  CAS  Google Scholar 

  82. Felder D, Gutierrez Nava M, del Pilar Carreon M, Eckert J-F, Luccisano M, Schall C, Masson P, Gallani J-L, Heinrich B, Guillon D, Nierengarten J-F (2002) Synthesis of amphiphilic fullerene derivatives and their incorporation in Langmuir and Langmuir–Blodgett films. Helv Chim Acta 85(1):288–319

    Article  CAS  Google Scholar 

  83. Zhang S, Rio Y, Cardinali F, Bourgogne C, Gallani J-L, Nierengarten J-F (2003) Amphiphilic diblock dendrimers with a fullerene core. J Org Chem 68(25):9787–9797

    Article  CAS  Google Scholar 

  84. Felder-Flesch D, Bourgogne C, Gallani J-L, Guillon D (2005) Interfacial behavior and film-forming properties of an amphiphilic hexasubstituted [60]fullerene. Tetrahedron Lett 46(38):6507–6510

    Article  CAS  Google Scholar 

  85. Maierhofer AP, Brettreich M, Burghardt S, Vostrowsky O, Hirsch A, Langridge S, Bayerl TM (2000) Structure and electrostatic interaction properties of monolayers of amphiphilic molecules derived from C60-fullerenes: a film balance, neutron-, and infrared reflection study. Langmuir 16(23):8884–8891

    Article  CAS  Google Scholar 

  86. Burghardt S, Hirsch A, Schade B, Ludwig K, Böttcher C (2005) Switchable supramolecular organization of structurally defined micelles based on an amphiphilic fullerene. Angew Chem Int Ed 44(19):2976–2979

    Article  CAS  Google Scholar 

  87. Brettreich M, Burghardt S, Böttcher C, Bayerl T, Bayerl S, Hirsch A (2000) Globular amphiphiles: membrane-forming hexaadducts of C60. Angew Chem Int Ed 39(10):1845–1848

    Article  CAS  Google Scholar 

  88. Schade B, Ludwig K, Böttcher C, Hartnagel U, Hirsch A (2007) Supramolecular structure of 5-nm spherical micelles with D 3 symmetry assembled from amphiphilic [3:3]-hexakis adducts of C60. Angew Chem Int Ed 46(23):4393–4396

    Article  CAS  Google Scholar 

  89. Hirsch A (2008) Amphiphilic architectures based on fullerene and calixarene platforms: from buckysome to shape-persistent micelles. Pure Appl Chem 80(3):571–587

    Article  CAS  Google Scholar 

  90. Grant JA, Gallardo MA, Pickup BT (1996) A fast method of molecular shape comparison: a simple application of a gaussian description of molecular shape. J Comput Chem 17(14):1653–1666

    Article  CAS  Google Scholar 

  91. Grant JA, Pickup BT, Sykes MJ, Kitchen CA, Nicholls A (2007) The gaussian generalized born model: application to small molecules. Phys Chem Chem Phys 9(35):4913–4922

    Article  CAS  Google Scholar 

  92. Gong LD, Yang ZZ (2010) Investigation of the molecular surface area and volume: defined and calculated by the molecular face theory. J Comput Chem 31(11):2098–2108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, Y., Chen, G. (2013). C60 Fullerene Amphiphiles as Supramolecular Building Blocks for Organized and Well-Defined Nanoscale Objects. In: Nierengarten, JF. (eds) Fullerenes and Other Carbon-Rich Nanostructures. Structure and Bonding, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_130

Download citation

Publish with us

Policies and ethics