Skip to main content
Log in

Intergeneric Hybridization between Streptomyces albulus and Bacillus subtilis Facilitates Production of ε-Poly-L-lysine from Corn Starch Residues

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Intergeneric hybridization between S.albulus and B. subtilis to produce ε-poly-L-lysine (ε-PL) from corn starch residues (CSR) was investigated in this study. One hybrid, designated S. albulus LS-84, which incorporated the protease gene from B. subtilis, could effectively utilize the protein in CSR as a nitrogen source. In fed-batch fermentation, LS-84 produced 32.6 g/L ε-PL in the presence of 20 g/L CSR. This was an increase of 256.1% compared to that of the parent strain S. albulus LS-01. The rapid hydrolysis of CSR by protease caused rapid growth for LS-84, which allowed higher respiratory activity. As a result, activities of several key enzymes in LS-84 were higher than those in LS-01; additionally, the content of several intracellular amino acids, such as Asp, Glu, and Arg, was also much higher in LS-84. Therefore, intergeneric hybridization between S. albulus and B. subtilis to produce ε-PL from CSR is an economical method for effective utilization of waste resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shima, S. and H. Sakai (1977) Polylysine produced by Streptomyces. Agric. Biol. Chem. 41: 1807–1809.

    CAS  Google Scholar 

  2. Hiraki, J., T. Ichikawa, and S. Ninomiya (2003) Use of ADME studies to confirm the safety of polylysine as a preservative in food. Regul. Toxicol. Pharm. 37: 328–340.

    Article  CAS  Google Scholar 

  3. Kahar, P., T. Iwata, J. Hiraki, E. Y. Park, and M. Okabe (2001) Enhancement of e-polylysine production by Streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 91: 190–194.

    Article  CAS  PubMed  Google Scholar 

  4. Hirohara, H., M. Takehara, M. Saimura, A. Ikezaki, and M. Miyamoto (2006) Biosynthesis of poly(e-L-lysine)s in two newly isolated strains of Streptomyces sp. Appl. Microbiol Biotechnol. 73: 321–331.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, X. S., L. Tang, S. Li, L. J. Liao, J. H. Zhang, and Z. G. Mao (2011) Optimization of medium for enhancement of e-poly-Llysine production by Streptomyces sp. M-Z18 with glycerol as carbon source. Bioresour. Technol. 102: 1148–1159.

    Google Scholar 

  6. Xia, J., Z. X. Xu, H. Xu, J. F. Liang, S. Li, and X. H. Feng (2014) Economical production of poly(e-L-lysine) and poly(Ldiaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1. Bioresour. Technol. 164: 241–247.

    Article  CAS  PubMed  Google Scholar 

  7. Shima, S. and H. Sakai (1981) Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agric. Biol. Chem. 45: 2497–2502.

    CAS  Google Scholar 

  8. Wang, L., X. S. Chen, G. Y. Wu, X. Zeng, X. D. Ren, S. Li, and Z. G. Mao (2017) Enhanced e-poly-L-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus. Bioprocess Biosyst. Eng. 40: 271–283.

    Article  CAS  PubMed  Google Scholar 

  9. Li, S., L. Tang, X. S. Chen, L. J. Liao, F. Li, and Z. G. Mao (2011) Isolation and characterization of a novel e-poly-L-lysine producing strain: Streptomyces griseofuscus. J. Ind. Microbiol. Biotechnol. 38: 557–563.

    Article  CAS  PubMed  Google Scholar 

  10. Li, S., X. S. Chen, C. D. Dong, F. L. Zhao, and Z. G. Mao (2013) Combining genome shuffling and interspecific hybridization among Streptomyces improved e-poly-L-lysine production. Appl. Biochem. Biotechnol. 169: 338–350.

    Article  CAS  PubMed  Google Scholar 

  11. Hamano, Y. and I. Nicchu (2007) e-Poly-L-lysine producer, Streptomyces albulus, has feedback inhibition resistant aspartokinase. Appl. Microbiol. Biotechnol. 76: 873–882.

    Article  CAS  PubMed  Google Scholar 

  12. Murmu, J. and C. William (2007) Phosphoenolpyruvate carboxylase protein kinase from developing castor oil seeds: partial purification, characterization, and reversible control by photosynthate supply. Planta 226: 1299–1310.

    Article  CAS  PubMed  Google Scholar 

  13. Kiyohara, H., W. Toshiro, and I. Junko (1990) Intergeneric hybridization between Monascus anka and Asperyillus oryzae by protoplast fusion. Appl. Microbiol. Biotechnol. 33: 671–676.

    Article  CAS  Google Scholar 

  14. Rojan, P., D. Gangadharan, and K. Madhavan (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour. Technol. 99: 8008–8015.

    Article  CAS  Google Scholar 

  15. John, F. and E. Hendrik (1977) Interspecific hybridization between Penicillium chlysogenum and Penicillium cyaneofulvum following protoplast fusion. Mol. Gen. Genet. 157: 281–284.

    Article  Google Scholar 

  16. Takehara, M, and H. Hirohara (2010) in Amino-Acid Homopolymers Occurring in Nature. Springer-Verlag, Berlin, Germany, pp. 1–22.

    Book  Google Scholar 

  17. Driouch, H., B. Sommer, and C. Wittmann (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol. Bioeng. 105: 1058–1068.

    CAS  PubMed  Google Scholar 

  18. Driouch, H., R. Hänsch, T. Wucherpfennig, R. Krull, and C. Wittmann (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol. Bioeng. 109: 462–471.

    Article  CAS  PubMed  Google Scholar 

  19. Ren, X. D., Y. J. Xu, X. Zeng, X. S. Chen, L. Tang, and Z. G. Mao (2015) Microparticle enhanced production of e-poly- L-lysine in fed-batch fermentation. RSC Adv. 5: 82138–82143.

    Article  CAS  Google Scholar 

  20. Helena, B. and G. Hugh (1993) Phosphoenolpyruvate carboxylase from Streptomyces coelicolor A3(2): purification of the enzyme, cloning of the ppc gene and over-expression of the protein in a streptomycete. Biochem. J. 293: 131–136.

    Article  Google Scholar 

  21. Vrancken, G., T. Rimaux, and S. Weckx (2009) Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 13010. Int. J. Food Microbiol. 135: 216–222.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y., J. Xu, and Z. Yuan (2010) Artificial neural networkgenetic algorithm based optimization for the immobilization of cellulase on the smart polymer eudragit L-100. Bioresour. Technol. 101: 3153–3158.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, N., Du, ZJ. et al. Intergeneric Hybridization between Streptomyces albulus and Bacillus subtilis Facilitates Production of ε-Poly-L-lysine from Corn Starch Residues. Biotechnol Bioproc E 23, 580–587 (2018). https://doi.org/10.1007/s12257-018-0253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0253-1

Keywords

Navigation