Skip to main content
Log in

Enhancing Mechanical Properties of Polyurethane with Cellulose Acetate as Chain Extender

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyurethanes (PUs) are a class of versatile engineering materials synthesized by the reaction between polyol, isocyanate, and chain extender as the hardener. Among various cellulose derivatives, cellulose acetate (CA) possessed unique features such as excellent mechanical properties, good thermal stability, tailorable surface chemistry, and can be used as hydroxyl providers to enhance the properties of PUs. Our goal is to develop a simple method to prepare PUs by using varying weight ratio of CA as the chain extender or crosslinking agent. PUs modified with varying weight percentage of CA (5 %, 10 %, and 30 %) (based on total parts per weight of poly(tetramethylene oxide) (PTMO) and isocyanate) were compared with PUs modified with 1,4-butanediol (BD), acting as the control. The morphological, chemical structural, thermal stability, and mechanical properties of the modified PU CA polymer were investigated thoroughly. The findings from this study found that modified PUs with CA possessed higher thermal stability. The PUs with 10 % of CA as chain extender was found to be the optimal percentage for the preparation of PUs with the highest tensile strength and elongation properties. However, the utilisation of higher weight percentage of CA reduced the elongation property of the modified PUs due to excessive crosslinking effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Gama, A. Ferreira, and A. Barros-Timmons, Materials, 11, 1841 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  2. S. Pina, V. P. Ribeiro, C. F. Marques, F. R. Maia, T. H. Silva, R. L. Reis, and Oliveira, Materials (Basel), 12, 1824 (2019).

    Article  CAS  Google Scholar 

  3. F. Rafiemanzelat, A. Fathollahi Zonouz, and G. Emtiazi, Amino Acids, 44, 449 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. M. Alinejad, C. Henry, S. Nikafshar, A. Gondaliya, S. Bagheri, N. Chen, S. K. Singh, D. B. Hodge, and M. Nejad, Polymers, 11, 1202 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  5. G. T. Howard, Int. Biodeterior. Biodegradation, 49, 245 (2002).

    Article  CAS  Google Scholar 

  6. S. Demiroğlu, F. Erdoğan, E. Akin, H. A. Karavana, and M. Ö. Seydibeyoğlu, Gazi Univ. J. Sci., 30, 97 (2017).

    Google Scholar 

  7. R. Shi, D. Chen, Q. Liu, Y. Wu, X. Xu, L. Zhang, and W. Tian, Int. J. Mol. Sci., 10, 4223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Saha, T. K. Chaki, and N. K. Singha, J. Appl. Polym. Sci., 130, 3328 (2013).

    Article  CAS  Google Scholar 

  9. T. F. Garrison and M. R. Kessler in “Bio-Based Plant Oil Polymers and Composites” (S. Madbouly, C. Zhang, and M. R. Kessler Eds.) pp.37–54, Elsevier Inc., 2016.

  10. T. J. Touched and E. M. Cossfriff-Hernandez in “Advances in Polyurethane Biomaterials” (S. L. Cooper and J. Guan Eds.), pp.3–22, Woodhead Publishing, 2016.

  11. L. Bengtström, M. Salden, and A. A. Stec, Fire Sci. Rev., 5, 4 (2016).

    Article  CAS  Google Scholar 

  12. K. C. Hung, C. S. Tseng, and S. H. Hsu in “Advances in Polyurethane Biomaterials” (S. L. Cooper and J. Guan Eds.), pp.149–170, Woodhead Publishing, 2016.

  13. L. W. McKeen (Ed.), “Effect of Temperature and Other Factors on Plastics and Elastomers”, 3rd ed., p.233, William Andrew Publishing, Oxford, 2014.

    Google Scholar 

  14. C. Vilela, R. J. B. Pinto, S. Pinto, P. Marques, A. Silvestre, and C. S. D. R. F. Barros, “Polysaccharide Based Hybrid Materials”, 1st ed., Springer, Berlin, 2018.

    Book  Google Scholar 

  15. S. Vlad, D. Filip, D. Macocinschi, I. Spiridon, A. Nistor, L. M. Gradinaru, and V. E. Musteata, Optoelectron. Adv. Mater. Rapid Commun., 4, 407 (2010).

    CAS  Google Scholar 

  16. S. K. Haraguchi, A. A. Silva, E. T. Tenório-Neto, G. M. de Carvalho, E. C. Muniz, and A. F. Rubira, Acta Sci. — Technol., 35, 747 (2013).

    Article  Google Scholar 

  17. V. Kupka, Q. Zhou, F. Ansari, H. Tang, M. Šlouf, L. Vojtová, L. A. Berglund, and J. Jančář, Polym. Compos., 40, S1 (2019).

    Article  CAS  Google Scholar 

  18. P. Khadivi, M. Salami-Kalajahi, H. Roghani-Mamaqani, and R. Lotfi Mayan Sofla, Appl. Phys. A Mater. Sci. Process., 125, 11 (2019).

    Article  CAS  Google Scholar 

  19. N. M. Girouard, S. Xu, G. T. Schueneman, M. L. Shofner, and J. C. Meredith, ACS Appl. Mater. Interfaces, 8, 1458 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. K. Yuwawech, J. Wootthikanokkhan, S. Wanwong, and S. Tanpichai, J. Appl. Polym. Sci., 134, 45 (2017).

    Article  CAS  Google Scholar 

  21. A. Hadjadj, O. Jbara, A. Tara, M. Gilliot, F. Malek, E. M. Maafi, and L. Tighzert, Compos. Struct., 135, 217 (2016).

    Article  Google Scholar 

  22. S. M. Choi, M. W. Lee, and E. J. Shin, Polymers (Basel), 11, 356 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  23. Y. C. Chung, N. D. Khiem, J. W. Choi, and B. C. Chun, J. Macromol. Sci. Part A Pure Appl. Chem., 51, 339 (2014).

    Article  CAS  Google Scholar 

  24. E. N. Bifari, S. Bahadar Khan, K. A. Alamry, A. M. Asiri, and K. Akhtar, Curr. Pharm. Des., 22, 3007 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. T. Riaz, A. Ahmad, S. Saleemi, M. Adrees, F. Jamshed, A. M. Hai, and T. Jamil, Carbohydr. Polym., 153, 582 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. A. R. Unnithan, G. Gnanasekaran, Y. Sathishkumar, Y. S. Lee, and C. S. Kim, Carbohydr. Polym., 102, 884 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. M. Sivakumar, R. Malaisamy, C. J. Sajitha, D. Mohan, V. Mohan, and R. Rangarajan, J. Memb. Sci., 169, 215 (2000).

    Article  CAS  Google Scholar 

  28. C. Tang, P. Chen, and H. Liu, Polym. Eng. Sci., 48, 1296 (2008).

    Article  CAS  Google Scholar 

  29. M. M. Ali, N. Pakkang, S. Taira, K. Koda, K. Itoyama, and Y. Uraki, J. Wood Chem. Technol., 39, 282 (2019).

    Article  CAS  Google Scholar 

  30. K. P. Somani, N. K. Patel, S. S. Kansara, and A. K. Rakshit, J. Macromol. Sci. — Pure Appl. Chem., 43, 797 (2006).

    Article  CAS  Google Scholar 

  31. C. S. Wong and K. H. Badri, Mater. Sci. Appl., 3, 78 (2012).

    CAS  Google Scholar 

  32. K. C. Pradhan and P. L. Nayak, Pelagia Res. Libr. Adv. Appl. Sci. Res., 3, 3045 (2012).

    CAS  Google Scholar 

  33. H. Zhao, T. H. Hao, G. H. Hu, D. Shi, D. Huang, T. Jiang, and Q. C. Zhang, Materials, 10, 3 (2017).

    Google Scholar 

  34. H. N. Kim, D. W. Lee, H. Ryu, G. S. Song, and D. S. Lee, Molecules, 24, 6 (2019).

    Google Scholar 

  35. J. Kujawa, E. Rynkowska, K. Fatyeyeva, K. Knozowska, A. Wolan, K. Dzieszkowski, G. Li, and W. Kujawski, Polymers, 11, 1217 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  36. M. D. C. E. Pinto, D. D. da Silva, A. L. A. Gomes, V. D. S. A. Leite, A. R. F. e Moraes, R. F. de Novais, J. Tronto, and F. G. Pinto, RSC Advances, 9, 5620 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. H. Bakhshi, H. Yeganeh, A. Yari, and S. K. Nezhad, J. Mater. Sci., 49, 5365 (2014).

    Article  CAS  Google Scholar 

  38. G. Trovati, E. A. Sanches, S. C. Neto, Y. P. Mascarenhas, and G. O. Chierice, J. Appl. Polym. Sci., 115, 263 (2010).

    Article  CAS  Google Scholar 

  39. A. M. Das, A. A. Ali, and M. P. Hazarika, Carbohydr. Polym., 112, 342 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. H. Kamal, F. M. Abd-Elrahim, and S. Lotfy, J. Radiat. Res. Appl. Sci., 7, 146 (2014).

    Article  CAS  Google Scholar 

  41. A. Wolska, M. Goździkiewicz, and J. Ryszkowska, J. Mater. Sci., 47, 5627 (2012).

    Article  CAS  Google Scholar 

  42. S. Oprea, Polym. Bull., 65, 753 (2010).

    Article  CAS  Google Scholar 

  43. T. Calvo-Correas, M. D. Martin, A. Retegi, N. Gabilondo, M. A. Corcuera, and A. Eceiza, ACS Sustain. Chem. Eng., 4, 5684 (2016).

    Article  CAS  Google Scholar 

  44. A. Tenorio-Alfonso, M. C. Sánchez, and J. M. Franco, Polymers (Basel), 9, 1 (2017).

    Article  CAS  Google Scholar 

  45. M. Moghanizadeh-Ashkezari, P. Shokrollahi, M. Zandi, and F. Shokrolahi, Polym. Adv. Technol., 29, 528 (2018).

    Article  CAS  Google Scholar 

  46. D. B. Klinedinst, I. Yilgör, E. Yilgör, M. Zhang, and G. L. Wilkes, Polymer (Guildf), 53, 5358 (2012).

    Article  CAS  Google Scholar 

  47. T. F. Meyabadi, G. M. M. Sadeghi, F. Dadashian, and H. E. Z. Asl, J. Mater. Sci., 48, 7283 (2013).

    Article  CAS  Google Scholar 

  48. R. Venkatakrishnan, T. Senthilvelan, and T. Vijayakuma, J. Appl. Mech. Eng., 6, 296 (2017).

    Google Scholar 

  49. C. Wang, C. Ma, C. Mu, and W. Lin, RSC Adv., 7, 44 (2017).

    Google Scholar 

  50. T. Arunkumar and S. Ramachandran, Int. J. Ambient Energy, 38, 781 (2017).

    Article  CAS  Google Scholar 

  51. Y. Wang and L. Jin, Polymers (Basel), 10, 289 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  52. W. Lei, C. Fang, X. Zhou, J. Li, R. Yang, Z. Zhang, and D. Liu, J. Mater. Sci. Technol., 33, 1424 (2017).

    Article  CAS  Google Scholar 

  53. A. D. Padsalgikar, “Plastics in Medical Devices for Cardiovascular Applications”, pp.53–82, William Andrew Publishing, 2018.

Download references

Acknowldgements

The author would like to thank Daicel Corporation, Japan for supplying the cellulose acetate (CA) in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Andou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha, S., Andou, Y. Enhancing Mechanical Properties of Polyurethane with Cellulose Acetate as Chain Extender. Fibers Polym 22, 2112–2118 (2021). https://doi.org/10.1007/s12221-021-0789-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0789-0

Keywords

Navigation