Skip to main content
Log in

Impact of Microgravity on the Skin and the Process of Wound Healing

  • Review Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Microgravity is a component of the complex environment in space. Due to its adverse effects on the human body, it poses unknown obstacles to the implementation of space missions. In microgravity, the body often loses the point of force and it is difficult to control itself, which leads to various accidental collisions. As the largest organ of the human body, the skin is often damaged by traumatic injury because of its large contact area with the external environment. In this study, we summarized and discussed the latest research on the impact of weightlessness or simulated microgravity on the skin and the process of wound healing to further understand the changes and mechanisms of wound healing. A series of studies have investigated the effects of weightlessness or simulated microgravity on the human skin and the wound healing process. Under microgravity environment, the skin showed certain changes, such as thinning and altered blood supply; microgravity also affected various cellular functions and their associations with the extracellular matrix during wound healing. Various stages of wound healing and sophisticated interactions between the elements involved in wound healing become disordered in a microgravity environment. However, more studies are needed to further understand the impact and mechanisms of microgravity on the trauma repair process to provide theoretical guidance for wound healing. With the support and help of a lot of good researches and trails, accidental trauma will no longer be an obstacle to human exploration of space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akiyama, T., Horie, K., Hinoi, E., Hiraiwa, M., Kato, A., Maekawa, Y., Takahashi, A., Furukawa, S.: How does spaceflight affect the acquired immune system? NPJ Microgravity 6, 14 (2020). https://doi.org/10.1038/s41526-020-0104-1

    Article  Google Scholar 

  • Aubert, A.E., Beckers, F., Verheyden, B.: Cardiovascular function and basics of physiology in microgravity. Acta Cardiol. 60(2), 129–151 (2005). https://doi.org/10.2143/AC.60.2.2005024

    Article  Google Scholar 

  • Baevskiĭ, R.M.: Estimation and prediction of functional changes in organisms in space flight. Usp Fiziol Nauk 37(3), 42–57 (2006)

    Google Scholar 

  • Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., Tomic-Canic, M.: Growth factors and cytokines in wound healing. Wound Repair Regen 16(5), 585–601 (2008). https://doi.org/10.1111/j.1524-475X.2008.00410.x

    Article  Google Scholar 

  • Beck, M., Moreels, M., Quintens, R., Abou-El-Ardat, K., El-Saghire, H., Tabury, K., Michaux, A., Janssen, A., Neefs, M., Van Oostveldt, P., De Vos, W.H., Baatout, S.: Chronic exposure to simulated space conditions predominantly affects cytoskeleton remodeling and oxidative stress response in mouse fetal fibroblasts. Int J Mol Med 34(2), 606–615 (2014). https://doi.org/10.3892/ijmm.2014.1785

    Article  Google Scholar 

  • Beck, M., Tabury, K., Moreels, M., Jacquet, P., Van Oostveldt, P., De Vos, W.H., Baatout, S.: Simulated microgravity decreases apoptosis in fetal fibroblasts. Int J Mol Med 30(2), 309–313 (2012). https://doi.org/10.3892/ijmm.2012.1001

    Article  Google Scholar 

  • Billica, R.D., Pool, S.L., Nicogossian, A.E.: Crew Health Care Programs. In Space physiology and Medicine Edited by: Nicogossian A.E., Huntoon C.L., Pool S.L. Philadelphia: Williams & Wilkins 402–423 (1994)

  • Bikfalvi, A.: History and conceptual developments in vascular biology and angiogenesis research: a personal view. Angiogenesis 20(4), 463–478 (2017). https://doi.org/10.1007/s10456-017-9569-2

    Article  Google Scholar 

  • Braun, N., Thomas, S., Tronnier, H., Heinrich, U.: Self-Reported Skin Changes by a Selected Number of Astronauts after Long-Duration Mission on ISS as Part of the Skin B Project. Skin Pharmacol Physiol 32(1), 52–57 (2019). https://doi.org/10.1159/000494689

    Article  Google Scholar 

  • Cantle, P.M., Cotton, B.A.: Balanced Resuscitation in Trauma Management. Surg Clin North Am 97(5), 999–1014 (2017). https://doi.org/10.1016/j.suc.2017.06.002

    Article  Google Scholar 

  • Carlsson, S.I., Bertilaccio, M.T., Ballabio, E., Maier, J.A.: Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. Biochim Biophys Acta 1642(3), 173–179 (2003). https://doi.org/10.1016/j.bbamcr.2003.08.003

    Article  Google Scholar 

  • Carthy, J.M.: TGFβ signaling and the control of myofibroblast differentiation: Implications for chronic inflammatory disorders. J Cell Physiol 233(1), 98–106 (2018). https://doi.org/10.1002/jcp.25879

    Article  Google Scholar 

  • Chang, H., Zhang, L., Xu, P.T., Li, Q., Sheng, J.J., Wang, Y.Y., Chen, Y., Zhang, L.N., Yu, Z.B.: Nuclear translocation of calpain-2 regulates propensity toward apoptosis in cardiomyocytes of tail-suspended rats. J Cell Biochem 112(2), 571–580 (2011). https://doi.org/10.1002/jcb.22947

    Article  Google Scholar 

  • Chen, L., Mehta, N.D., Zhao, Y., DiPietro, L.A.: Absence of CD4 or CD8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Exp Dermatol 23(3), 189–194 (2014). https://doi.org/10.1111/exd.12346

    Article  Google Scholar 

  • Cintron, N.M., Lane, H.W., Leach, C.S.: Metabolic consequences of fluid shifts induced by microgravity. Physiologist 33(1 Suppl), S16–S19 (1990)

    Google Scholar 

  • Clement, J.Q., Lacy, S.M., Wilson, B.L.: Gene expression profiling of human epidermal keratinocytes in simulated microgravity and recovery cultures. Genomics Proteomics Bioinformatics 6(1), 8–28 (2008). https://doi.org/10.1016/s1672-0229(08)60017-0

    Article  Google Scholar 

  • Cotrupi, S., Ranzani, D., Maier, J.A.: Impact of modeled microgravity on microvascular endothelial cells. Biochim Biophys Acta 1746(2), 163–168 (2005). https://doi.org/10.1016/j.bbamcr.2005.10.002

    Article  Google Scholar 

  • Crucian, B., Stowe, R., Mehta, S., Uchakin, P., Quiriarte, H., Pierson, D.L., Sams, C.: Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 33(2), 456–465 (2013). https://doi.org/10.1007/s10875-012-9824-7

    Article  Google Scholar 

  • Crucian, B.E., Stowe, R.P., Quiriarte, H., Pierson, D.L., Sams, C.: Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat. Space Environ. Med. 82(9), 857–862 (2011)

    Article  Google Scholar 

  • Crucian, B.E., Stowe, R.P., Pierson, D.L., Sams, C.F.: Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 79(9), 835–843 (2008). https://doi.org/10.3357/asem.2276.2008

    Article  Google Scholar 

  • Crucian, B.E., Zwart, S.R., Mehta, S., Uchakin, P., Quiriarte, H.D., Pierson, D., Sams, C.F., Smith, S.M.: Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res 34(10), 778–786 (2014). https://doi.org/10.1089/jir.2013.0129

    Article  Google Scholar 

  • Davidson, J.M., Aquino, A.M., Woodward, S.C., Wilfinger, W.W.: Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat. Faseb j 13(2), 325–329 (1999). https://doi.org/10.1096/fasebj.13.2.325

    Article  Google Scholar 

  • Demontis, G.C., Germani, M.M., Caiani, E.G., Barravecchia, I., Passino, C., Angeloni, D.: Human Pathophysiological Adaptations to the Space Environment. Front. Physiol. 8, 547 (2017). https://doi.org/10.3389/fphys.2017.00547

    Article  Google Scholar 

  • Dovi, J.V., Szpaderska, A.M., DiPietro, L.A.: Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost 92(2), 275–280 (2004). https://doi.org/10.1160/th03-11-0720

    Article  Google Scholar 

  • el-Ghalbzouri, A., Gibbs, S., Lamme, E., Van Blitterswijk, C.A., Ponec, M.: Effect of fibroblasts on epidermal regeneration. Br J Dermatol 147(2), 230–243 (2002). https://doi.org/10.1046/j.1365-2133.2002.04871.x

  • Eming, S.A., Martin, P., Tomic-Canic, M.: Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6(265), 265sr266 (2014). https://doi.org/10.1126/scitranslmed.3009337

  • Ertl, A.C., Diedrich, A., Biaggioni, I., Levine, B.D., Robertson, R.M., Cox, J.F., Zuckerman, J.H., Pawelczyk, J.A., Ray, C.A., Buckey, J.C., Jr., Lane, L.D., Shiavi, R., Gaffney, F.A., Costa, F., Holt, C., Blomqvist, C.G., Eckberg, D.L., Baisch, F.J., Robertson, D.: Human muscle sympathetic nerve activity and plasmanoradrenaline kinetics in space. J Physiol 538(Pt 1), 321–329 (2002)

    Article  Google Scholar 

  • Fan, Q.C., Li, Y.Z., Gao, J.Y., et al.: Effects of Taikong Yangxinwan on the Functions of Cardiovascular in Rat under Simulated Weightlessness. Manned Spaceflight 19(001), 64–70 (2013)

    Google Scholar 

  • Farahani, R.M., DiPietro, L.A.: Microgravity and the implications for wound healing. Int Wound J 5(4), 552–561 (2008). https://doi.org/10.1111/j.1742-481X.2008.00438.x

    Article  Google Scholar 

  • Frank, B., Bart, V., Aubert, A., eacute: Space Physiology. John Wiley & Sons, Inc. (2006)

  • Gontcharov, I.B., Kovachevich, I.V., Pool, S.L., Navinkov, O.L., Barratt, M.R., Bogomolov, V.V., House, N.: In-flight medical incidents in the NASA-Mir program. Aviat Space Environ Med 76(7), 692–696 (2005)

    Google Scholar 

  • Gonzales, K.A.U., Fuchs, E.: Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Dev Cell 43(4), 387–401 (2017). https://doi.org/10.1016/j.devcel.2017.10.001

    Article  Google Scholar 

  • Gravitz, L.: Skin. Nature 563(7732), S83 (2018). https://doi.org/10.1038/d41586-018-07428-4

    Article  Google Scholar 

  • Griffoni, C., Di Molfetta, S., Fantozzi, L., Zanetti, C., Pippia, P., Tomasi, V., Spisni, E.: Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J. Cell. Biochem. 112(1), 265–272 (2011). https://doi.org/10.1002/jcb.22921

    Article  Google Scholar 

  • Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T.: Wound repair and regeneration. Nature 453(7193), 314–321 (2008). https://doi.org/10.1038/nature07039

    Article  Google Scholar 

  • Hamilton, D.R., Sargsyan, A.E., Kirkpatrick, A.W., Nicolaou, S., Campbell, M., Dawson, D.L., Melton, S.L., Beck, G., Guess, T., Rasbury, J., Dulchavsky, S.A.: Sonographic detection of pneumothorax and hemothorax in microgravity. Aviat Space Environ Med 75(3), 272–277 (2004)

    Google Scholar 

  • Han, G., Ceilley, R.: Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther 34(3), 599–610 (2017). https://doi.org/10.1007/s12325-017-0478-y

    Article  Google Scholar 

  • Hargens, A.R., Bhattacharya, R., Schneider, S.M.: Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol 113(9), 2183–2192 (2013). https://doi.org/10.1007/s00421-012-2523-5

    Article  Google Scholar 

  • Herault, S., Fomina, G., Alferova, I., Kotovs, K.A., Poliakov, V., Arbeille, P.: Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 81(5), 384–390 (2000)

    Article  Google Scholar 

  • Howden, M., Siamwala, J.H., Hargens, A.R.: Bone microvascular flow differs from skin microvascular flow in response to head-down tilt. J Appl Physiol (1985) 123(4), 860–866 (2017). https://doi.org/10.1152/japplphysiol.00881.2016

  • Ikeda, H., Muratani, M., Hidema, J., Hada, M., Fujiwara, K., Souda, H., Yoshida, Y., Takahashi, A.: Expression Profile of Cell Cycle-Related Genes in Human Fibroblasts Exposed Simultaneously to Radiation and Simulated Microgravity. Int J Mol Sci 20(19) (2019). https://doi.org/10.3390/ijms20194791

  • Jia, D., Jiang, H., Weng, X., Wu, J., Bai, P., Yang, W., Wang, Z., Hu, K., Sun, A., Ge, J.: Interleukin-35 Promotes Macrophage Survival and Improves Wound Healing After Myocardial Infarction in Mice. Circ Res 124(9), 1323–1336 (2019). https://doi.org/10.1161/circresaha.118.314569

    Article  Google Scholar 

  • Jia T.L., Zhang J.L., Zheng C., et al. Effect study of short-term simulated gravity less on wound healing. Chinese J Tissue Eng Res 5(016), 46+72 (2001)

  • Kaisho, T., Akira, S.: Toll-like receptor function and signaling. J Allergy Clin Immunol 117(5), 979–987; quiz 988 (2006). https://doi.org/10.1016/j.jaci.2006.02.023

  • Kaur, I., Simons, E.R., Castro, V.A., Ott, C.M., Pierson, D.L.: Changes in neutrophil functions in astronauts. Brain Behav Immun 18(5), 443–450 (2004). https://doi.org/10.1016/j.bbi.2003.10.005

    Article  Google Scholar 

  • Kaur, I., Simons, E.R., Castro, V.A., Ott, C.M., Pierson, D.L.: Changes in monocyte functions of astronauts. Brain Behav Immun 19(6), 547–554 (2005). https://doi.org/10.1016/j.bbi.2004.12.006

    Article  Google Scholar 

  • Kirkpatrick, A.W., Ball, C.G., Campbell, M., Williams, D.R., Parazynski, S.E., Mattox, K.L., Broderick, T.J.: Severe traumatic injury during long duration spaceflight: Light years beyond ATLS. J Trauma Manag Outcomes 3, 4 (2009). https://doi.org/10.1186/1752-2897-3-4

    Article  Google Scholar 

  • Kirkpatrick, A.W., Dulchavsky, S.A., Boulanger, B.R., Campbell, M.R., Hamilton, D.R., Dawson, D.L., Williams, D.R.: Extraterrestrial resuscitation of hemorrhagic shock: fluids. J Trauma 50(1), 162–168 (2001). https://doi.org/10.1097/00005373-200101000-00036

    Article  Google Scholar 

  • Kirkpatrick, A.W., Hamilton, D.R., Nicolaou, S., Sargsyan, A.E., Campbell, M.R., Feiveson, A., Dulchavsky, S.A., Melton, S., Beck, G., Dawson, D.L.: Focused Assessment with Sonography for Trauma in weightlessness: a feasibility study. J Am Coll Surg 196(6), 833–844 (2003). https://doi.org/10.1016/s1072-7515(02)01906-3

    Article  Google Scholar 

  • Kirkpatrick, A.W., Nicolaou, S., Campbell, M.R., Sargsyan, A.E., Dulchavsky, S.A., Melton, S., Beck, G., Dawson, D.L., Billica, R.D., Johnston, S.L., Hamilton, D.R.: Percutaneous aspiration of fluid for management of peritonitis in space. Aviat Space Environ Med 73(9), 925–930 (2002)

    Google Scholar 

  • König, K.: Review: Clinical in vivo multiphoton FLIM tomography. Methods Appl Fluoresc 8(3), 034002 (2020). https://doi.org/10.1088/2050-6120/ab8808

    Article  Google Scholar 

  • Landén, N.X., Li, D., Ståhle, M.: Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73(20), 3861–3885 (2016). https://doi.org/10.1007/s00018-016-2268-0

    Article  Google Scholar 

  • Lei, X.H., Ning, L.N., Cao, Y.J., Liu, S., Zhang, S.B., Qiu, Z.F., Hu, H.M., Zhang, H.S., Liu, S., Duan, E.K.: NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS ONE 6(11), e26603 (2011). https://doi.org/10.1371/journal.pone.0026603

    Article  Google Scholar 

  • Li, B.B., Chen, Z.Y., Jiang, N., Guo, S., Yang, J.Q., Chai, S.B., Yan, H.F., Sun, P.M., Hu, G., Zhang, T., Xu, B.X., Sun, H.W., Zhou, J.L., Yang, H.M., Cui, Y.: Simulated microgravity significantly altered metabolism in epidermal stem cells. In Vitro Cell Dev Biol Anim 56(3), 200–212 (2020). https://doi.org/10.1007/s11626-020-00435-8

    Article  Google Scholar 

  • Li, C.F., Sun, J.X., Gao, Y., Shi, F., Pan, Y.K., Wang, Y.C., Sun, X.Q.: Clinorotation-induced autophagy via HDM2-p53-mTOR pathway enhances cell migration in vascular endothelial cells. Cell Death Dis 9(2), 147 (2018). https://doi.org/10.1038/s41419-017-0185-2

    Article  Google Scholar 

  • Li, N.: Simulated microgravity and mammalian cell DNA damage. University of Chinese Academy Sci (2015)

  • Li Y.F., Fu X.Y., Zhou L.Y., et al. Effect of Simulated Microgravity Environment on Fibroblasts Proliferation and Expressions of Wound Healing Related Proteins' Genes in Mice. Medical & Pharmaceutical Journal of Chinese People's Liberation Army 28(007), 17–20 (2016)

  • Lin, J.J., Zhang, B.N., Jiang, N., et al.: Effects of RCCS simulated microgravity on proliferation and cell cytoskeleton of human HaCaT keratinocyte. Chinese Journal of Emergency Medicine 027(010), 1107–1111 (2018)

    Google Scholar 

  • Lowrey, C.R., Perry, S.D., Strzalkowski, N.D., Williams, D.R., Wood, S.J., Bent, L.R.: Selective skin sensitivity changes and sensory reweighting following short-duration space flight. J Appl Physiol 116(6), 683–692 (2014). https://doi.org/10.1152/japplphysiol.01200.2013

  • Mao, X.W., Pecaut, M.J., Stodieck, L.S., Ferguson, V.L., Bateman, T.A., Bouxsein, M.L., Gridley, D.S.: Biological and metabolic response in STS-135 space-flown mouse skin. Free Radic Res 48(8), 890–897 (2014). https://doi.org/10.3109/10715762.2014.920086

    Article  Google Scholar 

  • Mariotti, M., Maier, J.A.: Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. J Cell Biochem 104(1), 129–135 (2008). https://doi.org/10.1002/jcb.21605

    Article  Google Scholar 

  • Michikami, D., Kamiya, A., Fu, Q., Iwase, S., Mano, T., Sunagawa, K.: Attenuated thermoregulatory sweating and cutaneous vasodilation after 14-day bed rest in humans. J Appl Physiol 96(1), 107–114 (2004). https://doi.org/10.1152/japplphysiol.00025.2003

  • Monici, M., Francesca, C., Giovanni, R., Franco, F., Marcel, E.: An in Vitro Study on Tissue Repair: Impact of Unloading on Cells Involved in the Remodelling Phase. Microgravity Sci Technol (2011)

  • Neutelings, T., Nusgens, B.V., Liu, Y., Tavella, S., Ruggiu, A., Cancedda, R., Gabriel, M., Colige, A., Lambert, C.: Skin physiology in microgravity: a 3-month stay aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice. NPJ Microgravity 1, 15002 (2015). https://doi.org/10.1038/npjmgrav.2015.2

    Article  Google Scholar 

  • Nicogossian, A.E.: The Environment of Space Exploration. In: Space Physiology and Medicine. 59–94 (2016)

  • Ohnishi, T., Inoue, N., Matsumoto, H., Omatsu, T., Ohira, Y., Nagaoka, S.: Cellular content of p53 protein in rat skin after exposure to the space environment. J Appl Physiol 81(1), 183–185 (1996). https://doi.org/10.1152/jappl.1996.81.1.183

  • Pankov, R., Yamada, K.M.: Fibronectin at a glance. J Cell Sci 115(Pt 20), 3861–3863 (2002). https://doi.org/10.1242/jcs.00059

    Article  Google Scholar 

  • Periyasamy, S., Sánchez, E.R.: Antagonism of glucocorticoid receptor transactivity and cell growth inhibition by transforming growth factor-beta through AP-1-mediated transcriptional repression. Int J Biochem Cell Biol 34(12), 1571–1585 (2002). https://doi.org/10.1016/s1357-2725(02)00057-2

    Article  Google Scholar 

  • Purdy, R.E., Wilkerson, M.K., Hughson, R.L., Norsk, P., Watenpaugh, D.E.: The cardiovascular system in microgravity: symposium summary. Proc West Pharmacol Soc 46, 16–27 (2003)

    Google Scholar 

  • Radek, K.A., Baer, L.A., Eckhardt, J., DiPietro, L.A., Wade, C.E.: Mechanical unloading impairs keratinocyte migration and angiogenesis during cutaneous wound healing. J Appl Physiol 104(5), 1295–1303 (2008). https://doi.org/10.1152/japplphysiol.00977.2007

  • Ramirez, H., Patel, S.B., Pastar, I.: The Role of TGFβ Signaling in Wound Epithelialization. Adv Wound Care (new Rochelle) 3(7), 482–491 (2014). https://doi.org/10.1089/wound.2013.0466

    Article  Google Scholar 

  • Ranieri, D., Cucina, A., Bizzarri, M., Alimandi, M., Torrisi, M.R.: Microgravity influences circadian clock oscillation in human keratinocytes. FEBS Open Bio 5, 717–723 (2015). https://doi.org/10.1016/j.fob.2015.08.012

    Article  Google Scholar 

  • Ranieri, D., Proietti, S., Dinicola, S., Masiello, M.G., Rosato, B., Ricci, G., Cucina, A., Catizone, A., Bizzarri, M., Torrisi, M.R.: Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes. Sci Rep 7(1), 538 (2017). https://doi.org/10.1038/s41598-017-00602-0

    Article  Google Scholar 

  • Sakai, K., Mohtai, M., Iwamoto, Y.: Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif Tissue Int 63(6), 515–520 (1998). https://doi.org/10.1007/s002239900567

    Article  Google Scholar 

  • Sato, M., Kanikowska, D., Iwase, S., Shimizu, Y., Inukai, Y., Nishimura, N., Sugenoya, J.: Effects of encouraged water drinking on thermoregulatory responses after 20 days of head-down bed rest in humans. Int J Biometeorol 53(5), 443–449 (2009). https://doi.org/10.1007/s00484-009-0230-7

    Article  Google Scholar 

  • Seitzer, U., Bodo, M., Müller, P.K., Açil, Y., Bätge, B.: Microgravity and hypergravity effects on collagen biosynthesis of human dermal fibroblasts. Cell Tissue Res 282(3), 513–517 (1995). https://doi.org/10.1007/bf00318883

    Article  Google Scholar 

  • Semov, A., Semova, N., Lacelle, C., Marcotte, R., Petroulakis, E., Proestou, G., Wang, E.: Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts. Faseb j 16(8), 899–901 (2002). https://doi.org/10.1096/fj.01-1002fje

    Article  Google Scholar 

  • Shi, F., Wang, Y.C., Zhao, T.Z., Zhang, S., Du, T.Y., Yang, C.B., Li, Y.H., Sun, X.Q.: Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS ONE 7(7), e40365 (2012). https://doi.org/10.1371/journal.pone.0040365

    Article  Google Scholar 

  • Shi, J., Wang, Y., He, J., Li, P., Jin, R., Wang, K., Xu, X., Hao, J., Zhang, Y., Liu, H., Chen, X., Wu, H., Ge, Q.: Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 31(8), 3695–3709 (2017). https://doi.org/10.1096/fj.201700034R

    Article  Google Scholar 

  • Shook, B.A., Wasko, R.R., Rivera-Gonzalez, G.C., Salazar-Gatzimas, E., López-Giráldez, F., Dash, B.C., Muñoz-Rojas, A.R., Aultman, K.D., Zwick, R.K., Lei, V., Arbiser, J.L., Miller-Jensen, K., Clark, D.A., Hsia, H.C., Horsley, V.: Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362(6417) (2018). https://doi.org/10.1126/science.aar2971

  • Siamwala, J.H., Majumder, S., Tamilarasan, K.P., Muley, A., Reddy, S.H., Kolluru, G.K., Sinha, S., Chatterjee, S.: Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOS-cGMP-PKG pathway in macrovascular endothelial cells. FEBS Lett 584(15), 3415–3423 (2010a). https://doi.org/10.1016/j.febslet.2010.06.039

    Article  Google Scholar 

  • Siamwala, J.H., Reddy, S.H., Majumder, S., Kolluru, G.K., Muley, A., Sinha, S., Chatterjee, S.: Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells. Protoplasma 242(1–4), 3–12 (2010b). https://doi.org/10.1007/s00709-010-0114-z

    Article  Google Scholar 

  • Singh, P., Chen, C., Pal-Ghosh, S., Stepp, M.A., Sheppard, D., Van De Water, L.: Loss of integrin alpha9beta1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J Invest Dermatol 129(1), 217–228 (2009). https://doi.org/10.1038/jid.2008.201

    Article  Google Scholar 

  • Song, X.J., Shi, X.T., Wu, Y., et al.: Protective effect of"space ginseng yeast"on human primary fibroblasts under microgravity condition. China Surfactant Detergent & Cosmetics 47(12), 698–702 (2017a). https://doi.org/10.13218/j.cnki.csdc.2017.12.009

    Article  Google Scholar 

  • Song, X.W., Wang, Z.Y., Jiang, Y.F., et al.: Effects of simulated microgravity on miRNA expression in mouse fibroblasts. Chinese Journal of Trauma 33(8), 756–764 (2017b). https://doi.org/10.3760/cma.j.issn.1001-8050.2017.08.017

    Article  Google Scholar 

  • Sorg, H., Tilkorn, D.J., Hager, S., Hauser, J., Mirastschijski, U.: Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur Surg Res 58(1–2), 81–94 (2017). https://doi.org/10.1159/000454919

    Article  Google Scholar 

  • Stervbo, U., Roch, T., Kornprobst, T., Sawitzki, B., Grütz, G., Wilhelm, A., Lacombe, F., Allou, K., Kaymer, M., Pacheco, A., Vigne, J., Westhoff, T.H., Seibert, F.S., Babel, N.: Gravitational stress during parabolic flights reduces the number of circulating innate and adaptive leukocyte subsets in human blood. PLoS ONE 13(11), e0206272 (2018). https://doi.org/10.1371/journal.pone.0206272

    Article  Google Scholar 

  • Stervbo, U., Roch, T., Westhoff, T.H., Gayova, L., Kurchenko, A., Seibert, F.S., Babel, N.: Repeated Changes to the Gravitational Field Negatively Affect the Serum Concentration of Select Growth Factors and Cytokines. Front. Physiol. 10, 402 (2019). https://doi.org/10.3389/fphys.2019.00402

    Article  Google Scholar 

  • Strbo, N., Yin, N., Stojadinovic, O.: Innate and Adaptive Immune Responses in Wound Epithelialization. Adv Wound Care (new Rochelle) 3(7), 492–501 (2014). https://doi.org/10.1089/wound.2012.0435

    Article  Google Scholar 

  • Strauss S., Krog R.L., Feiveson A.H.: Extravehicular mobility unit training and astronaut injuries. Aviat Space Environ Med 76(469–474) (2005)

  • Sun, X.Q., Yao, Y.J., Yang, C.B., Feng, D.Y., Jiang, C.L., Liang, W.B.: Effects of lower body negative pressure in the first and last week during 21 d head-down bed rest on orthostatic tolerance and cardiac function. Space Med Med Eng (beijing) 15(2), 84–88 (2002)

    Google Scholar 

  • Takeo, M., Lee, W., Ito, M.: Wound healing and skin regeneration. Cold Spring Harb Perspect Med 5(1), a023267 (2015). https://doi.org/10.1101/cshperspect.a023267

    Article  Google Scholar 

  • Takeuchi, O., Akira, S.: Pattern recognition receptors and inflammation. Cell 140(6), 805–820 (2010). https://doi.org/10.1016/j.cell.2010.01.022

    Article  Google Scholar 

  • Tanaka, Y., Nakano, J., Hamaue, Y., Sekino, Y., Sakamoto, J., Kataoka, H., Okita, M.: Hindlimb suspension does not influence mechanical sensitivity, epidermal thickness, and peripheral nerve density in the glabrous skin of the rat hind paw. Physiol Res 62(1), 119–123 (2013). https://doi.org/10.33549/physiolres.932348

    Article  Google Scholar 

  • Tettamanti, G., Grimaldi, A., Rinaldi, L., Arnaboldi, F., Congiu, T., Valvassori, R., de Eguileor, M.: The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol Cell 96(6), 443–455 (2004). https://doi.org/10.1016/j.biolcel.2004.04.008

    Article  Google Scholar 

  • Versari, S., Villa, A., Bradamante, S., Maier, J.A.: Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim Biophys Acta 1773(11), 1645–1652 (2007). https://doi.org/10.1016/j.bbamcr.2007.05.014

    Article  Google Scholar 

  • Wang, Y.C., Yang, C.B., Wu, Y.H., Gao, Y., Lu, D.Y., Shi, F., Wei, X.M., Sun, X.Q.: Artificial gravity with ergometric exercise as a countermeasure against cardiovascular deconditioning during 4 days of head-down bed rest in humans. Eur J Appl Physiol 111(9), 2315–2325 (2011). https://doi.org/10.1007/s00421-011-1866-7

    Article  Google Scholar 

  • Wang, Z., Wang, Y., Farhangfar, F., Zimmer, M., Zhang, Y.: Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts. PLoS ONE 7(7), e40951 (2012). https://doi.org/10.1371/journal.pone.0040951

    Article  Google Scholar 

  • Wang, Z.Y., Jiang, F.Q., Xu, B.X., et al.: Effect of rotary cell culture system-simulated microgravity environment on the expression of lncRNA in mouse fibroblasts. Medical & Pharmaceutical Journal of Chinese People’s Liberation Army 42(10), 876–882 (2017). https://doi.org/10.11855/j.issn.0577-7402.2017.10.07

    Article  Google Scholar 

  • Wen, X.L., Yang, G.H., Wang, T., et al.: Effects of Simulated Weightlessness on T Cell Subpopulations and Activity of IL-2 and IL-6 in Mice. Space Medicine & Medical Engineering 01, 60–62 (2001)

    Google Scholar 

  • Westerlind, K.C., Turner, R.T.: The skeletal effects of spaceflight in growing rats: tissue-specific alterations in mRNA levels for TGF-beta. J Bone Miner Res 10(6), 843–848 (1995). https://doi.org/10.1002/jbmr.5650100603

    Article  Google Scholar 

  • Williams, D.R.: The biomedical challenges of space flight. Annu Rev Med 54, 245–256 (2003). https://doi.org/10.1146/annurev.med.54.101601.152215

    Article  Google Scholar 

  • Wotring, V.E.: Medication use by U.S. crewmembers on the International Space Station. Faseb j 29(11), 4417–4423 (2015). https://doi.org/10.1096/fj.14-264838

  • Yang, X., Wang, J., Guo, S.L., Fan, K.J., Li, J., Wang, Y.L., Teng, Y., Yang, X.: miR-21 promotes keratinocyte migration and re-epithelialization during wound healing. Int J Biol Sci 7(5), 685–690 (2011). https://doi.org/10.7150/ijbs.7.685

    Article  Google Scholar 

  • Yuan, M.: Effects of simulated microgravity on cardiovascular and mechanisms research. Air Force Medical University of PLA (the Fourth Military Medical University) (2009)

  • Yuan, W.Y.: Blockage of angiotensin-II signaling reduces heart injury during weightlessness. Soochow University (2019)

  • Zhang, R., Supowit, S.C., Hou, X., Simmons, D.J.: Transforming growth factor-beta2 mRNA level in unloaded bone analyzed by quantitative in situ hybridization. Calcif Tissue Int 64(6), 522–526 (1999). https://doi.org/10.1007/s002239900643

    Article  Google Scholar 

  • Zhu, H., Wang, H., Liu, Z.: Experimental Investigation on Variations of Human Sweating under Simulated Weightlessness. Hunan Daxue Xuebao 44(9), 188–196 (2017)

    Google Scholar 

  • Zhang W.H., Qi P., Yang F., et al.: Myocardial Apoptosis Induced by Simulated Weightlessness in Rats. Space Med Med Eng 4(22) (2009)

Download references

Acknowledgements

We acknowledge all authors whose publications were included in our article.

Funding

This work was supported by: (1) the Fund of Strategic Support Force Medical Center (09ZX25); (2) 2018 Logistics Open Research and Scientific Research Project (CZZ18j010).

Author information

Authors and Affiliations

Authors

Contributions

The study’s conception and design were performed by JY, PS, JZh and YC. Material preparation, data collection, and analysis were performed by JY, NJ,YY, ZL, SG, ZC, and BL. The first draft of the manuscript was written by JY, JN, and ZL. SC, SL, HY, PS, JY and JZ interpreted the data. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jin-Lian Zhou or Yan Cui.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

There is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JQ., Sun, PM., Jiang, N. et al. Impact of Microgravity on the Skin and the Process of Wound Healing. Microgravity Sci. Technol. 33, 64 (2021). https://doi.org/10.1007/s12217-021-09907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09907-2

Keywords

Navigation