Skip to main content
Log in

18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

This meta-analysis aims to establish the diagnostic performance of 18F-NaF-PET/CT for the detection of bone metastases in prostate cancer patients. The performance of 18F-NaF-PET/CT was compared with other imaging techniques in the same cohort of patients.

Methods

A systematic search was performed in PubMed/Medline and EMBASE (last Updated, September 28, 2018). Studies with histopathology confirmation and/or clinical/imaging follow-up as reference standard were eligible for inclusion.

Results

A total of 14 studies were included. Twelve studies including 507 patients provided per-patient basis information. The pooled sensitivity, specificity, diagnostic odds ratio (DOR) and the area under the summary receiver operating characteristics curve (AUC) of 18F-NaF-PET/CT for the detection of bone metastases were 0.98 (95% CI 0.95–0.99), 0.90 (95% CI 0.86–0.93), 123.2 and 0.97, respectively. Seven studies provided the lesion-based accuracy information of 1812 lesions identified on 18F-NaF-PET/CT with the pooled sensitivity, specificity, DOR and AUC of 0.97 (95% CI 0.95–0.98), 0.84 (95% CI 0.81–0.87), 206.8 and 0.97, respectively. The overall diagnostic performance of 18F-NaF-PET/CT is superior to 99mTc-bone scintigraphy (AUC 0.842; P < 0.001; four studies) and 99mTc-SPECT (AUC 0.896; P < 0.001, four studies). Compared to 18F NaF-PET/CT, whole-body MRI with diffusion-weighted imaging (DWI) was shown to have lower sensitivity (0.83, 95% CI 0.68–0.93), with no significant difference in the overall performance (AUC 0.947; P = 0.18, four studies).

Conclusion

18F-NaF-PET/CT has excellent diagnostic performance in the detection of bone metastases in staging and restaging of high-risk prostate cancer patients. The performance of 18F-NaF-PET/CT is superior to 99mTc bone scintigraphy and SPECT, and comparable to DWI–MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1:505–27.

    Article  PubMed  Google Scholar 

  2. Beheshti M, Langsteger W, Fogelman I. Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39:396–407.

    Article  PubMed  Google Scholar 

  3. Azad GK, Taylor B, Rubello D, Colletti PM, Goh V, Cook GJ. Molecular and functional imaging of bone metastases in breast and prostate cancers: an overview. Clin Nucl Med. 2016;41:e44–50.

    Article  PubMed  Google Scholar 

  4. Kulshrestha RK, Vinjamuri S, England A, Nightingale J, Hogg P. The role of 18F-sodium fluoride PET/CT bone scans in the diagnosis of metastatic bone disease from breast and prostate cancer. J Nucl Med Technol. 2016;44:217–22.

    Article  PubMed  Google Scholar 

  5. Bastawrous S, Bhargava P, Behnia F, Djang DS, Haseley DR. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics. 2014;34:1295–316.

    Article  PubMed  Google Scholar 

  6. Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2015;55:59–67.

    Article  PubMed  Google Scholar 

  7. Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–9.

    Article  PubMed  Google Scholar 

  8. Jadvar H, Desai B, Ji L, et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med. 2012;37:637–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Iagaru A, Mittra E, Dick DW, Gambhir SS. Prospective evaluation of (99 m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol. 2012;14:252–9.

    Article  PubMed  Google Scholar 

  10. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sorensen J, Ahlstrom H. Whole-body diffusion-weighted MRI compared with (18)F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol. 2012;199:1114–20.

    Article  PubMed  Google Scholar 

  11. Withofs N, Grayet B, Tancredi T, et al. (1)(8)F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32:168–76.

    Article  PubMed  Google Scholar 

  12. Langsteger W, Balogova S, Huchet V, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging. 2011;55:448–57.

    CAS  PubMed  Google Scholar 

  13. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  14. Poulsen MH, Petersen H, Hoilund-Carlsen PF, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography(PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int. 2014;114:818–23.

    Article  CAS  PubMed  Google Scholar 

  15. Rao L, Zong Z, Chen Z, et al. 18F-Labeled NaF PET-CT in detection of bone metastases in patients with preoperative lung cancer. Medicine (Baltimore). 2016;95:e3490.

    Article  CAS  Google Scholar 

  16. Gerety EL, Lawrence EM, Wason J, et al. Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design. Ann Oncol. 2015;26:2113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dyrberg E, Hendel HW, Huynh THV, et al. 68Ga-PSMA-PET/CT in comparison with 18F-fluoride-PET/CT and whole-body MRI for the detection of bone metastases in patients with prostate cancer: a prospective diagnostic accuracy study. Eur Radiol. 2019;29(3):1221–30.

    Article  PubMed  Google Scholar 

  18. Zacho HD, Nielsen JB, Afshar-Oromieh A, et al. Prospective comparison of (68)Ga-PSMA PET/CT, (18)F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:1884–97.

    Article  CAS  PubMed  Google Scholar 

  19. Capitanio S, Bongioanni F, Piccardo A, et al. Comparisons between glucose analogue 2-deoxy-2-((18)F)fluoro-D-glucose and (18)F-sodium fluoride positron emission tomography/computed tomography in breast cancer patients with bone lesions. World J Radiol. 2016;8:200–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen CT, Qiu ZL, Han TT, Luo QY. Performance of 18F-fluoride PET or PET/CT for the detection of bone metastases: a meta-analysis. Clin Nucl Med. 2015;40:103–10.

    Article  PubMed  Google Scholar 

  21. Tateishi U, Morita S, Taguri M, et al. A meta-analysis of (18)F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med. 2010;24:523–31.

    Article  PubMed  Google Scholar 

  22. Hillner BE, Hanna L, Makineni R, et al. Intended versus inferred treatment after (18)F-fluoride PET performed for evaluation of osseous metastatic disease in the national oncologic PET registry. J Nucl Med. 2018;59:421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gareen IF, Hillner BE, Hanna L, et al. Hospice admission and survival after (18)F-fluoride PET performed for evaluation of osseous metastatic disease in the national oncologic PET registry. J Nucl Med. 2018;59:427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hillner BE, Siegel BA, Hanna L, et al. Impact of (18)F-fluoride PET on intended management of patients with cancers other than prostate cancer: results from the national oncologic PET registry. J Nucl Med. 2014;55:1054–61.

    Article  CAS  PubMed  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9 (W264).

    Article  PubMed  Google Scholar 

  26. Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.

    Article  PubMed  Google Scholar 

  27. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.

    Article  PubMed  Google Scholar 

  28. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lijmer JG, Bossuyt PM, Heisterkamp SH. Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat Med. 2002;21:1525–37.

    Article  PubMed  Google Scholar 

  30. von Hippel PT. The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Med Res Methodol. 2015;15:35.

    Article  Google Scholar 

  31. Deeks JJ. Systematic reviews in health care: systematic reviews of evaluations of diagnostic and screening tests. BMJ. 2001;323:157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

    Article  CAS  PubMed  Google Scholar 

  33. Wondergem M, van der Zant FM, Knol RJJ, et al. (99 m)Tc-HDP bone scintigraphy and (18)F-sodiumfluoride PET/CT in primary staging of patients with prostate cancer. World J Urol. 2018;36:27–34.

    Article  PubMed  Google Scholar 

  34. Fonager RF, Zacho HD, Langkilde NC, et al. Diagnostic test accuracy study of (18)F-sodium fluoride PET/CT, (99 m)Tc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer. Am J Nucl Med Mol Imaging. 2017;7:218–27.

    PubMed  PubMed Central  Google Scholar 

  35. Bortot DC, Amorim BJ, Oki GC, et al. (1)(8)F-Fluoride PET/CT is highly effective for excluding bone metastases even in patients with equivocal bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:1730–6.

    Article  PubMed  Google Scholar 

  36. Im H-J, Ibrahim N, Perk T, Jeraj R, Liu G, Cho S, Perlman S. Diagnostic strategy of 18F-NaF (NaF) PET/CT for inconclusive lesions in patients with metastatic prostate cancer. J Nucl Med. 2016 (conference abstract).

  37. Jacobs MA, Macura KJ, Zaheer A, et al. Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad Radiol. 2018;25:1405–14.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Padhani AR, Lecouvet FE, Tunariu N, et al. METastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol. 2017;71:81–92.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Minamimoto R, Loening A, Jamali M, et al. Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med. 2015;56:1862–8.

    Article  CAS  PubMed  Google Scholar 

  40. Harmon SA, Bergvall E, Mena E, et al. A prospective comparison of 18F-sodium fluoride PET/CT and PSMA-targeted 18F-DCFBC PET/CT in metastatic prostate cancer. J Nucl Med. 2018;59(11):1665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uprimny C, Svirydenka A, Fritz J, et al. Comparison of [(68)Ga]Ga-PSMA-11 PET/CT with [(18)F]NaF PET/CT in the evaluation of bone metastases in metastatic prostate cancer patients prior to radionuclide therapy. Eur J Nucl Med Mol Imaging. 2018;45:1873–83.

    Article  CAS  PubMed  Google Scholar 

  42. Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Coleman RE. Impact of 18F-fluoride PET in patients with known prostate cancer: initial results from the National Oncologic PET Registry. J Nucl Med. 2014;55:574–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrbod S. Javadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhbahaei, S., Jones, K.M., Werner, R.A. et al. 18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies. Ann Nucl Med 33, 351–361 (2019). https://doi.org/10.1007/s12149-019-01343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-019-01343-y

Keywords

Navigation