Skip to main content
Log in

Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don’t have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kumar V, Dangi AK, Shukla P (2018) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60:226–235. https://doi.org/10.1007/s12033-018-0059-6

    Article  CAS  PubMed  Google Scholar 

  2. Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X (2019) Improvements of thermophilic enzymes: from genetic modifications to applications. Bioresour Technol 279:350–361. https://doi.org/10.1016/j.biortech.2019.01.087

    Article  CAS  PubMed  Google Scholar 

  3. Böttcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–282. https://doi.org/10.1016/j.mib.2010.01.010

    Article  CAS  PubMed  Google Scholar 

  4. Yang H, Li J, Du G, Liu L (2017) Microbial production and molecular engineering of industrial enzymes: challenges and strategies. In: Biotechnology of microbial enzymes. Academic Press, Cambridge, pp 151–165. https://doi.org/10.1016/B978-0-12-803725-6.00006-6

    Chapter  Google Scholar 

  5. Liu ZQ, Lu MM, Zhang XH, Cheng F, Xu JM, Xue YP, Jin LQ, Wang YS, Zheng YG (2018) Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid. Int J Biol Macromol 116:563–571. https://doi.org/10.1016/j.ijbiomac.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  6. Srivastava N, Srivastava M, Ramteke PW, Mishra PK (2019) Synthetic biology strategy for microbial cellulases: an overview. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 229–238. https://doi.org/10.1016/B978-0-444-63503-7.00014-0

    Chapter  Google Scholar 

  7. Liu M, Dai X, Guan R, Xu X (2014) Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catal Commun 55:6–10. https://doi.org/10.1016/j.catcom.2014.06.002

    Article  CAS  Google Scholar 

  8. Patel SK, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647. https://doi.org/10.4014/jmb.1401.01025

    Article  CAS  PubMed  Google Scholar 

  9. Mostafa FA, El Aty AAA (2018) Thermodynamics enhancement of Alternaria tenuissima KM651985 laccase by covalent coupling to polysaccharides and its applications. Int J Biol Macromol 120:222–229. https://doi.org/10.1016/j.ijbiomac.2018.08.081

    Article  CAS  PubMed  Google Scholar 

  10. Pandi A, Kuppuswami GM, Ramudu KN, Palanivel S (2019) A sustainable approach for degradation of leather dyes by a new fungal laccase. J Clean Prod 211:590–597. https://doi.org/10.1016/j.jclepro.2018.11.048

    Article  CAS  Google Scholar 

  11. Xu G, Wang J, Yin Q, Fang W, Xiao Y, Fang Z (2019) Expression of a thermo-and alkali-philic fungal laccase in Pichia pastoris and its application. Protein Expr Purif 154:16–24. https://doi.org/10.1016/j.pep.2018.09.015

    Article  CAS  PubMed  Google Scholar 

  12. Ranimol G, Venugopal T, Gopalakrishnan S, Sunkar S (2018) Production of laccase from Trichoderma harzianum and its application in dye decolourisation. Biocatal Agric Biotechnol 16:400–404. https://doi.org/10.1016/j.bcab.2018.09.003

    Article  Google Scholar 

  13. Cardoso BK, Linde GA, Colauto NB, do Valle JS (2018) Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatal Agric Biotechnol 16:558–563. https://doi.org/10.1016/j.bcab.2018.09.026

    Article  Google Scholar 

  14. Ellaiah P, Prabhakar T, Ramakrishna B, Taleb AT, Adinarayana K (2004) Production of lipase by immobilized cells of Aspergillus niger. Process Biochem 39:525–528. https://doi.org/10.1016/S0032-9592(01)00340-5

    Article  CAS  Google Scholar 

  15. Abada EA (2019) Application of microbial enzymes in the dairy industry. In: Enzymes in food biotechnology. Academic Press, Cambridge, pp 61–72. https://doi.org/10.1016/B978-0-12-813280-7.00005-0

    Chapter  Google Scholar 

  16. Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim SK (2016) Marine microbial amylases: properties and applications. In: Advances in food and nutrition research. Academic Press, Cambridge, vol 79, pp 161–177. https://doi.org/10.1016/bs.afnr.2016.07.001

    Chapter  Google Scholar 

  17. Wang J, Li Y, Lu F (2018) Molecular cloning and biochemical characterization of an α-amylase family from Aspergillus niger. Electr J Biotechnol 32:55–62. https://doi.org/10.1016/j.ejbt.2018.01.004

    Article  CAS  Google Scholar 

  18. Roy JK, Borah A, Mahanta CL, Mukherjee AK (2013) Cloning and overexpression of raw starch digesting α-amylase gene from Bacillus subtilis strain AS01a in Escherichia coli and application of the purified recombinant α-amylase (AmyBS-I) in raw starch digestion and baking industry. J Mol Catal B Enzym 97:118–129. https://doi.org/10.1016/j.molcatb.2013.07.019

    Article  CAS  Google Scholar 

  19. Bach E, Sant’Anna V, Daroit DJ, Corrêa APF, Segalin J, Brandelli A (2012) Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochem 47:2455–2462. https://doi.org/10.1016/j.procbio.2012.10.007

    Article  CAS  Google Scholar 

  20. Yu XC, Ma SL, Xu Y, Fu CH, Jiang CY, Zhou CY (2017) Construction and application of a novel genetically engineered Aspergillus oryzae for expressing proteases. Electr J Biotechnol 29:32–38. https://doi.org/10.1016/j.ejbt.2017.07.004

    Article  CAS  Google Scholar 

  21. Lakshmi BKM, Kumar DM, Hemalatha KPJ (2018) Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. J Genet Eng Biotechnol 16:295–304. https://doi.org/10.1016/j.jgeb.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sudha S, Nandhini SU, Mathumathi V, Nayaki JMA (2018) Production, optimization and partial purification of protease from terrestrial bacterium Exiguobacterium profundam sp. MM1. Biocatal Agric Biotechnol 16:347–352. https://doi.org/10.1016/j.bcab.2018.09.002

    Article  Google Scholar 

  23. Dos Santos Aguilar JG, Sato HH (2018) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int 103:253–262. https://doi.org/10.1016/j.foodres.2017.10.044

    Article  CAS  PubMed  Google Scholar 

  24. Mechri S, Kriaa M, Berrouina MBE, Benmrad MO, Jaouadi NZ, Rekik H, Bouacem K, Bouanane-Darenfed A, Chebbi A, Sayadi S, Chamkha M (2017) Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 101:383–397. https://doi.org/10.1016/j.ijbiomac.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  25. Souza PM, Werneck G, Aliakbarian B, Siqueira F, Ferreira Filho EX, Perego P, Junior AP (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110. https://doi.org/10.1016/j.fct.2017.03.055

    Article  CAS  PubMed  Google Scholar 

  26. Da Silva OS, de Almeida EM, de Melo AHF, Porto TS (2018) Purification and characterization of a novel extracellular serine-protease with collagenolytic activity from Aspergillus tamarii URM4634. Int J Biol Macromol 117:1081–1088. https://doi.org/10.1016/j.ijbiomac.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  27. Lim L, Senba H, Kimura Y, Yokota S, Doi M, Yoshida KI, Takenaka S (2018) Influences of N-linked glycosylation on the biochemical properties of aspartic protease from Aspergillus glaucus MA0196. Process Biochem 79:74–80. https://doi.org/10.1016/j.procbio.2018.12.017

    Article  CAS  Google Scholar 

  28. Pascoal A, Estevinho LM, Martins IM, Choupina AB (2018) Novel sources and functions of microbial lipases and their role in the infection mechanisms. Physiol Mol Plant Pathol 104:119–126. https://doi.org/10.1016/j.pmpp.2018.08.003

    Article  CAS  Google Scholar 

  29. Cihangir N, Sarikaya E (2004) Investigation of lipase production by a new isolate of Aspergillus sp. World J Microbiol Biotechnol 20:193–197. https://doi.org/10.1023/B:WIBI.0000021781.61031.3a

    Article  CAS  Google Scholar 

  30. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520. https://doi.org/10.1007/s12010-011-9444-3

    Article  CAS  PubMed  Google Scholar 

  31. Nigam VK, Arfi T, Kumar V, Shukla P (2017) Bioengineering of nitrilases towards its use as green catalyst: applications and perspectives. Indian J Microbiol 57:131–138. https://doi.org/10.1007/s12088-017-0645-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu Z, Cai T, Xiong N, Zou SP, Xue YP, Zheng YG (2018) Engineering the residues on “A” surface and C-terminal region to improve thermostability of nitrilase. Enzyme Microb Technol 113:52–58. https://doi.org/10.1016/j.enzmictec.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, Yang S (2016) Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J Mol Catal B Enzym 123:73–80. https://doi.org/10.1016/j.molcatb.2015.11.002

    Article  CAS  Google Scholar 

  34. Holyavka MG, Kayumov AR, Baydamshina DR, Koroleva VA, Trizna EY, Trushin MV, Artyukhov VG (2018) Efficient fructose production from plant extracts by immobilized inulinases from Kluyveromyces marxianus and Helianthus tuberosus. Int J Biol Macromol 115:829–834. https://doi.org/10.1016/j.ijbiomac.2018.04.107

    Article  CAS  PubMed  Google Scholar 

  35. Singh RS, Chauhan K, Kennedy JF (2017) A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int J Biol Macromol 96:312–322. https://doi.org/10.1016/j.ijbiomac.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  36. Singh RS, Chauhan K, Kennedy JF (2019) Fructose production from inulin using fungal inulinase immobilized on 3-aminopropyl-triethoxysilane functionalized multiwalled carbon nanotubes. Int J Biol Macromol 125:41–52. https://doi.org/10.1016/j.ijbiomac.2018.11.281

    Article  CAS  PubMed  Google Scholar 

  37. Singh RS, Chauhan K (2017) Inulinase production from a new inulinase producer, Penicillium oxalicum BGPUP-4. Biocatal Agric Biotechnol 9:1–10. https://doi.org/10.1016/j.bcab.2016.10.012

    Article  Google Scholar 

  38. Markham KA, Alper HS (2018) Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol 36:1085–1095. https://doi.org/10.1016/j.tibtech.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Kumar P, Patel SK, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  40. Singh D, Rawat S, Waseem M, Gupta S, Lynn A, Nitin M, Sharma KK (2016) Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs. Biochem Biophys Res Commun 469:306–312. https://doi.org/10.1016/j.bbrc.2015.11.096

    Article  CAS  PubMed  Google Scholar 

  41. Sahnoun M, Jemli S, Trabelsi S, Bejar S (2018) Modifing Aspergillus oryzae S2 amylase substrate specificity and thermostability through its tetramerisation using biochemical and in silico studies and stabilization. Int J Biol Macromol 117:483–492. https://doi.org/10.1016/j.ijbiomac.2018.05.136

    Article  CAS  PubMed  Google Scholar 

  42. Lončar N, Božić N, Lopez-Santin J, Vujčić Z (2013) Bacillus amyloliquefaciens laccase–from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresour Technol 147:177–183. https://doi.org/10.1016/j.biortech.2013.08.056

    Article  CAS  PubMed  Google Scholar 

  43. Deep K, Poddar A, Das SK (2016) Cloning, overexpression, and characterization of halostable, solvent-tolerant novel β-endoglucanase from a marine bacterium photobacterium panuliri LBS5 T (DSM 27646 T). Appl Biochem Biotechnol 178:695–709. https://doi.org/10.1007/s12010-015-1903-9

    Article  CAS  PubMed  Google Scholar 

  44. Gainza-Cirauqui P, Correia BE (2018) Computational protein design—the next generation tool to expand synthetic biology applications. Curr Opin Biotechnol 52:145–152. https://doi.org/10.1016/j.copbio.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  45. Purohit HJ, Tikariha H, Kalia VC (2018) Current scenario on application of computational tools in biological systems. In: Soft computing for biological systems. Springer, Singapore, pp 1–12. https://doi.org/10.1007/978-981-10-7455-4_1

    Chapter  Google Scholar 

  46. McCarty NS, Ledesma-Amaro R (2018) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37:181–197. https://doi.org/10.1016/j.tibtech.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  47. Kuzuwa S, Yokoi KJ, Kondo M, Kimoto H, Yamakawa A, Taketo A, Kodaira KI (2012) Properties of the inulinase gene levH1 of Lactobacillus casei IAM 1045; cloning, mutational and biochemical characterization. Gene 495:154–162. https://doi.org/10.1016/j.gene.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  48. Garuba EO, Onilude A (2018) Immobilization of thermostable exo-inulinase from mutant thermophilic Aspergillus tamarii-U4 using kaolin clay and its application in inulin hydrolysis. J Genet Eng Biotechnol 16:341–346. https://doi.org/10.1016/j.jgeb.2018.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  49. Emtenani S, Asoodeh A, Emtenani S (2015) Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806. Int J Biol Macromol 72:290–298. https://doi.org/10.1016/j.ijbiomac.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  50. Li D, Park JT, Li X, Kim S, Lee S, Shim JH, Park SH, Cha J, Lee BH, Kim JW, Park KH (2010) Overexpression and characterization of an extremely thermo-stable maltogenic amylase, with an optimal temperature of 100 °C, from the hyperthermophilic archaeon Staphylothermus marinus. N Biotechnol 27:300–307. https://doi.org/10.1016/j.nbt.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  51. Karam EA, Wahab WAA, Saleh SA, Hassan ME, Kansoh AL, Esawy MA (2017) Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol 102:694–703. https://doi.org/10.1016/j.ijbiomac.2017.04.033

    Article  CAS  PubMed  Google Scholar 

  52. Li S, Yang Q, Tang B, Chen A (2018) Improvement of enzymatic properties of Rhizopus oryzae α-amylase by site-saturation mutagenesis of histidine 286. Enzyme Microbiol Technol 117:96–102. https://doi.org/10.1016/j.enzmictec.2018.06.012

    Article  CAS  Google Scholar 

  53. Johnson J, Yang YH, Lee DG, Yoon JJ, Choi KY (2018) Expression, purification and characterization of halophilic protease Pph_Pro1 cloned from Pseudoalteromonas phenolica. Protein Expres Purif 152:46–55. https://doi.org/10.1016/j.pep.2018.07.010

    Article  CAS  Google Scholar 

  54. Sun H, Wang H, Gao W, Chen L, Wu K, Wei D (2015) Directed evolution of nitrilase PpL19 from Pseudomonas psychrotolerans L19 and identification of enantiocomplementary mutants toward mandelonitrile. Biochem Biophys Res Commun 468:820–825. https://doi.org/10.1016/j.bbrc.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  55. Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, Antranikian G (2006) Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expres Purif 47:672–681. https://doi.org/10.1016/j.pep.2006.01.006

    Article  CAS  Google Scholar 

  56. Acevedo JP, Reetz MT, Asenjo JA, Parra LP (2017) One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase. Enyzme Microbiol Technol 100:60–70. https://doi.org/10.1016/j.enzmictec.2017.02.005

    Article  CAS  Google Scholar 

  57. bin Abdul Wahab MKH, bin Jonet MA, Illias RM (2016) Thermostability enhancement of xylanase Aspergillus fumigatus RT-1. J Mol Catal B Enzym 134:154–163. https://doi.org/10.1016/j.molcatb.2016.09.020

    Article  CAS  Google Scholar 

  58. Tang F, Chen D, Yu B, Luo Y, Zheng P, Mao X, He J (2017) Improving the thermostability of Trichoderma reesei xylanase 2 by introducing disulfide bonds. Electr J Biotechnol 26:52–59. https://doi.org/10.1016/j.ejbt.2017.01.001

    Article  CAS  Google Scholar 

  59. de Souza AR, de Araújo GC, Zanphorlin LM, Ruller R, Franco FC, Torres FA, Mertens JA, Bowman MJ, Gomes E, Da Silva R (2016) Engineering increased thermostability in the GH-10 endo-1,4-β-xylanase from Thermoascus aurantiacus CBMAI 756. Int J Biol Macromol 93A:20–26. https://doi.org/10.1016/j.ijbiomac.2016.08.056

    Article  CAS  Google Scholar 

  60. Joshi R, Sharma R, Kuila A (2019) Lipase production from Fusarium incarnatum KU377454 and its immobilization using Fe3O4 NPs for application in waste cooking oil degradation. Bioresour Technol Rep 5:134–140. https://doi.org/10.1016/j.biteb.2019.01.005

    Article  Google Scholar 

  61. Prabaningtyas RK, Putri DN, Utami TS, Hermansyah H (2018) Production of immobilized extracellular lipase from Aspergillus niger by solid state fermentation method using palm kernel cake, soybean meal, and coir pith as the substrate. Energy Procedia 153:242–247. https://doi.org/10.1016/j.egypro.2018.10.010

    Article  CAS  Google Scholar 

  62. Jayawardena MB, Yee LH, Poljak A, Cavicchioli R, Kjelleberg SJ, Siddiqui KS (2017) Enhancement of lipase stability and productivity through chemical modification and its application to latex-based polymer emulsions. Process Biochem 57:131–140. https://doi.org/10.1016/j.procbio.2017.03.014

    Article  CAS  Google Scholar 

  63. El-Batal AI, ElKenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39. https://doi.org/10.1016/j.btre.2014.11.001

    Article  Google Scholar 

  64. Wen X, Du C, Wan J, Zeng G, Huang D, Yin L, Zhang J (2019) Immobilizing laccase on kaolinite and its application in treatment of malachite green effluent with the coexistence of Cd (П). Chemosphere 217:843–850. https://doi.org/10.1016/j.chemosphere.2018.11.073

    Article  CAS  PubMed  Google Scholar 

  65. Vite-Vallejo O, Palomares LA, Dantán-González E, Ayala-Castro HG, Martínez-Anaya C, Valderrama B, Folch-Mallol J (2009) The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol 45:233–239. https://doi.org/10.1016/j.enzmictec.2009.05.007

    Article  CAS  Google Scholar 

  66. Kumar V, Kumar A, Chhabra D, Shukla P (2019) Improved biobleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools. Bioresour Technol 271:274–282. https://doi.org/10.1016/j.biortech.2018.09.115

    Article  CAS  PubMed  Google Scholar 

  67. Clark DP, Pazdernik NJ, McGehee MR (2019). Chapter 7—Cloning genes for synthetic biology. In: Molecular biology, 3rd edn, pp 199–239. https://doi.org/10.1016/B978-0-12-813288-3.00007-0

    Chapter  Google Scholar 

  68. Shrivastava S, Shukla P, Deepalakshmi PD, Mukhopadhyay K (2013) Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World J Microbiol Biotechnol 29:2407–2415. https://doi.org/10.1007/s11274-013-1409-y

    Article  CAS  PubMed  Google Scholar 

  69. Yang JK, Zhang JW, Mao L, You X, Chen GJ (2016) Genetic modification and optimization of endo-inulinase for the enzymatic production of oligofructose from inulin. J Mol Catal B Enzym 134:225–232. https://doi.org/10.1016/j.molcatb.2016.10.020

    Article  CAS  Google Scholar 

  70. Xu X, Qi LS (2018) A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J Mol Biol 431:34–47. https://doi.org/10.1016/j.jmb.2018.06.037

    Article  CAS  PubMed  Google Scholar 

  71. Miao C, Yang L, Wang Z, Luo W, Li H, Lv P, Yuan Z (2018) Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production. Fuel 224:774–782. https://doi.org/10.1016/j.fuel.2018.02.149

    Article  CAS  Google Scholar 

  72. Diyanat S, Homaei A, Mosaddegh E (2018) Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int J Biol Macromol 118:92–98. https://doi.org/10.1016/j.ijbiomac.2018.06.075

    Article  CAS  PubMed  Google Scholar 

  73. Singh PK, Joseph J, Goyal S, Grover A, Shukla P (2016) Functional analysis of the binding model of microbial inulinases using docking and molecular dynamics simulation. J Mol Model 22:69. https://doi.org/10.1007/s00894-016-2935-y

    Article  CAS  PubMed  Google Scholar 

  74. Karthik MVK, Shukla P (2012) Computational strategies towards improved protein function prophecy and in silico structure based mutagenesis of xylanases from Thermomyces Lanuginosus. Springer, Berlin. https://doi.org/10.1007/978-1-4614-4723-8

    Book  Google Scholar 

  75. Shrivastava S, Shukla P, Poddar H (2007) In silico studies for evaluating conservation homology among family 11 xylanases from Thermomyces lanuginosus. J Appl Sci Environ Sanit 2:70–76

    Google Scholar 

  76. Shrivastava S, Kumar V, Baweja M, Shukla P (2016) Enhanced xylanase production from Thermomyces lanuginosus NCIM 1374/DSM 28966 using statistical analysis. J Pure Appl Microbiol 10:2225–2231

    CAS  Google Scholar 

  77. Holyavka MG, Kondratyev MS, Samchenko AA, Kabanov AV, Komarov VM, Artyukhov VG (2016) In silico design of high-affinity ligands for the immobilization of inulinase. Comput Biol Med 71:198–204. https://doi.org/10.1016/j.compbiomed.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  78. Ryšlavá H, Doubnerova V, Kavan D, Vaněk O (2013) Effect of posttranslational modifications on enzyme function and assembly. J Proteom 92:80–109. https://doi.org/10.1016/j.jprot.2013.03.025

    Article  CAS  Google Scholar 

  79. Bond AE, Row PE, Dudley E (2011) Post-translation modification of proteins; methodologies and applications in plant sciences. Phytochemistry 72:975–996. https://doi.org/10.1016/j.phytochem.2011.01.029

    Article  CAS  PubMed  Google Scholar 

  80. Cain JA, Solis N, Cordwell SJ (2014) Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteom 97:265–286. https://doi.org/10.1016/j.jprot.2013.08.012

    Article  CAS  Google Scholar 

  81. Janusz G, Jaszek M, Matuszewska A, DrĿczkowski P, Osiſska-Jaroszuk M (2015) Proteolytic modifications of laccase from Cerrena unicolor. J Mol Catal B Enzym 122:330–338. https://doi.org/10.1016/j.molcatb.2015.10.008

    Article  CAS  Google Scholar 

  82. Bao C, Zhang Q (2019) Modulation of protein activity and assembled structure by polymer conjugation: PEGylation vs glycosylation. Eur Polym J 112:263–272. https://doi.org/10.1016/j.eurpolymj.2019.01.020

    Article  CAS  Google Scholar 

  83. Kumar V, Marin-Navarro J, Shukla P (2016) Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol 32:34. https://doi.org/10.1007/s11274-015-2005-0

    Article  CAS  PubMed  Google Scholar 

  84. Baweja M, Nain L, Kawarabayasi Y, Shukla P (2016) Current technological improvements in enzymes toward their biotechnological applications. Front Microbiol 7:965. https://doi.org/10.3389/fmicb.2016.00965

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gupta SK, Shukla P (2018) Glycosylation control technologies for recombinant therapeutic proteins. Appl Microbiol Biotechnol 102:10457–10468. https://doi.org/10.1007/s00253-018-9430-6

    Article  CAS  PubMed  Google Scholar 

  86. Kumar V, Shukla P (2018) Extracellular xylanase production from T. lanuginosus VAPS24 at pilot scale and thermostability enhancement by immobilization. Process Biochem 71:53–60. https://doi.org/10.1016/j.procbio.2018.05.019

    Article  CAS  Google Scholar 

  87. Kumar V, Singh PK, Shukla P (2018) Thermostability and substrate specificity of GH-11 Xylanase from Thermomyces lanuginosus VAPS24. Indian J Microbiol 58:515–519. https://doi.org/10.1007/s12088-018-0751-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Basu M, Kumar V, Shukla P (2018) Recombinant approaches for microbial xylanases: recent advances and perspectives. Curr Protein Pept Sci 19:87–99. https://doi.org/10.2174/1389203718666161122110200

    Article  CAS  PubMed  Google Scholar 

  89. Kumar V, Baweja M, Liu H, Shukla P (2017) Microbial enzyme engineering: applications and perspectives. In: Recent advances in applied microbiology. Springer, Singapore, pp 259–273. https://doi.org/10.1007/978-981-10-5275-0_13

    Chapter  Google Scholar 

  90. Sinha R, Shukla P (2019) Current trends in protein engineering: updates and progress. Curr Protein Pept Sci 20:398–407. https://doi.org/10.2174/1389203720666181119120120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges the help by Mr. Mandeep for the formatting of the manuscript. PS acknowledges the Department of Microbiology, Barkatullah University, Bhopal, India for their infrastructural support for D.Sc. Work. The infrastructural support from Department of Science and Technology, New Delhi, Govt. of India, through FIST Grant (Grant No. 1196 SR/FST/LS-I/2017/4) and Department of Biotechnology, Government of India (Grant No. BT/PR27437/BCE/8/1433/2018) is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 59, 401–409 (2019). https://doi.org/10.1007/s12088-019-00819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00819-9

Keywords

Navigation