Skip to main content

Microbial Enzyme Engineering: Applications and Perspectives

  • Chapter
  • First Online:
Recent advances in Applied Microbiology

Abstract

Enzymes are fascinating the researchers because of their enormous power of catalysis and eco-friendly nature. In biotechnological processes, diversity of microbes is studied, and different metabolic reactions entitle a potential repository that direct valuable production of desirable products. Since community demands are getting more intensified, there is a continuous need to evolve the enzymes. There has been an immense development in techniques and computational tools that has developed the industries to meet the growing demands. The techniques such as protein engineering help in development of quality products by mutating the amino acids to make more stable and efficient product. Further, the techniques like enzyme immobilization give the opportunity to reuse the used enzyme with the same efficiency, thus a cost-effective measure for the industrial enzyme. Nanotechnology and CLEA formation are also incorporated in enzyme engineering to increase enzyme efficiency and their characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Naby M, Ismail AMS, Ahmed SA, Abdel Fattah AF (1998) Production and Immobilization of alkaline protease from Bacillus Mycoides. Bioresour Technol 64(3):205–210

    Article  CAS  Google Scholar 

  • Ajikumar PK, Xiao W-H, Keith EJ, Tyo YW, Fritz S, Effendi L, Oliver M, Too HP, Blaine P, Gregory S (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  Google Scholar 

  • Baweja M, Singh PK, Shukla P (2015) Enzyme technology, functional proteomics and systems biology towards unravelling molecular basis for functionality and interactions in biotechnological processes. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer/Verlag, Berlin/Heidelberg, pp 207–212

    Google Scholar 

  • Baweja M, Nain L, Kawarabayasi Y, Shukla P (2016) Current technological improvements in enzymes toward their biotechnological applications. Front Microbiol 7:965. doi:10.3389/fmicb.2016.00965

    Article  PubMed  PubMed Central  Google Scholar 

  • Bibi Z, Shahid F, Ul Qader SA, Aman A (2015) Agar–agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Int J Biol Macromol 57:121–127

    Article  Google Scholar 

  • Celikbicak O, Bayramoglu G, Yılmaz M, Ersoy G, Bicak N, Salih B, Arica MY (2014) Immobilization of laccase on hairy polymer grafted zeolite particles: Degradation of a model dye and product analysis with MALDI–ToF-MS. Microporous Mesoporous Mater 199:57–65

    Article  CAS  Google Scholar 

  • Chang MS (1991) Therapeutic applications of immobilized proteins and cells. Bioprocess Technol 14:305–318

    CAS  PubMed  Google Scholar 

  • Eijsink VGH, Veltman OR, Aukema W, Vriend G, Venema G (1995) Structural determinants of the stability of thermolysin-like proteinases. Nat Struct Biol 2:374–379

    Article  CAS  Google Scholar 

  • Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P (2015) Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int J Biol Macromol 72:1063–1068

    Article  CAS  Google Scholar 

  • Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, Zhang XC, Peng H, Xiao YZ (2012) A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 111:36–41

    Article  CAS  Google Scholar 

  • Guibault GG, Kauffmann JM, Patriarche GJ (1991) Immobilized enzyme electrodes as biosensors. Bioprocess Technol 14:209–262

    Google Scholar 

  • Gupta SK, Shukla P (2015) Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 18:1–10

    Google Scholar 

  • Gupta SK, Shukla P (2016) Microbial platform technology for recombinant antibody fragment production. A review. Crit Rev Microbiol 43:1–12. doi:10.3109/1040841X.2016.1150959

    Article  CAS  Google Scholar 

  • Kapoor M, Kuhad RC (2007) Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Appl Biochem Biotechnol 142(2):125–138

    Article  CAS  Google Scholar 

  • Karthik MVK, Shukla P (2012) Computational strategies towards improved protein function prophecy of xylanases from Thermomyces lanuginosus. Springer, New York. doi:10.1007/978-1-4614-4723-8

    Book  Google Scholar 

  • Keasling JD (1999) Gene expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17:452–460

    Article  CAS  Google Scholar 

  • Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Int J Biol Macromol 171(2):669–673

    CAS  Google Scholar 

  • Klapa MI, Park SM, Sinskey AJ (1999) Stephanopoulos G: metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory. Biotechnol Bioeng 62:375–391

    Article  CAS  Google Scholar 

  • Kumar V, Shukla P (2015) Functional aspects of xylanases toward industrial applications. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer/Verlag, Berlin/Heidelberg, pp 157–165

    Google Scholar 

  • Kumar V, Pandey P, Gupta S, Shukla P (2014) A reviving preliminary evoke on few xylanase producing fungal isolates from different ecological niche. Int J Curr Microbiol App Sci 3(4):501–506

    Google Scholar 

  • Kumar V, Marín-Navarro J, Shukla P (2016) Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol 32(2):34. doi:10.1007/s11274-015-2005-0

    Article  CAS  PubMed  Google Scholar 

  • Labrou NE (2010) Random Mutagenesis Methods for In Vitro Directed Enzyme Evolution. Curr Protein Pept Sci 11:91–100

    Article  CAS  Google Scholar 

  • Lee JY, Yang KS, Jang SA, Sung BH, Kim SC (2011) Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng 108:742–749

    Article  CAS  Google Scholar 

  • Lin MG, Chi MC, Chen YY, Wang TF, Lo HF, Lin LL (2016) Site-directed mutagenesis of a conserved Asn450 residue of Bacillus licheniformis γ-glutamyl transpeptidase. Int J Biol Macromol 91:416–425

    Article  CAS  Google Scholar 

  • Liu MQ, Huo WK, Xu X, Jin DF (2015) An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion. J Mol Catal B Enzym 120:119–126

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. NanoToday 3:40–47

    Article  CAS  Google Scholar 

  • Mahmod SS, Yusof F, Jami MS, Khanahmadi S, Shah H (2015) Development of an immobilized biocatalyst with lipase and protease activities as a multipurpose cross-linked enzyme aggregate (multi-CLEA). Process Biochem 50(12):2144–2157

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK (2015) Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol 72:71–78

    Article  CAS  Google Scholar 

  • Nadar SS, Muley AB, Ladole MR, Joshi PU (2016) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78

    Article  CAS  Google Scholar 

  • Nagar S, Mittal A, Kumar D, Gupta VK (2012) Immobilization of xylanase on glutaraldehyde activated aluminum oxide pellets for increasing digestibility of poultry feed. Process Biochem 47(9):1402–1410

    Article  CAS  Google Scholar 

  • Pal A, Khanum F (2011) Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochem 46(6):1315–1322

    Article  CAS  Google Scholar 

  • Pereira JF, de Queiroz MV, Gomes EA, Muro-Abad JI, de Ara’ujo EF (2002) Molecular characterization and evaluation of pectinase and cellulose production of Penicillium spp. Biotechnol Lett 24(10):831–838

    Article  CAS  Google Scholar 

  • Rahimi M, van der Meer JY, Geertsema EM, Poddar H, Baas BJ, Poelarends GJ (2016) Corrigendum: mutations closer to the active site improve the promiscuous aldolase activity of 4-oxalocrotonate tautomerase more effectively than distant mutations. Chem Bio Chem 17(13):1290. doi:10.1002/cbic.201600321

    Article  CAS  PubMed  Google Scholar 

  • Ramli AM, Muhammad NM, Rabu A, Munir A, Murad A, Diba FAB, Illias RM (2011) Molecular cloning, expression, and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Factories 10:94. doi:10.1186/1475-2859-10-94

    Article  CAS  Google Scholar 

  • Rasila TS, Pajunen MI, Savilahti H (2009) Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem 388:71–80

    Article  CAS  Google Scholar 

  • Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55:831–840

    Article  CAS  Google Scholar 

  • Sen S, Dasu VV, Mandal B (2007) Developments in directed evolution for improving enzyme functions. Appl Biochem Biotechnol 143:212–223

    Article  CAS  Google Scholar 

  • Shahrestani H, Taheri-Kafrani A, Soozanipour A, Tavakoli O (2016) Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem Eng J 109:51–58

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35(6):1583–1587

    Article  CAS  Google Scholar 

  • Shrivastava S, Lata S, Shukla P (2012) An insight on recent advances on immobilization methods for Industrial enzymes and its relevance to xylanases. Dyn Biochem Process Biotechnol Mol Biol 6(1):57–61

    Google Scholar 

  • Shrivastava S, Shukla P, Deepalakshmi PD, Mukhopadhyay K (2013) Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World J Microbiol Biotechnol 12:2407–2415

    Article  Google Scholar 

  • Silva MF, Rigo D, Mossi V, Treichel H (2013) Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food Bioprod Process 91(1):54–59

    Article  CAS  Google Scholar 

  • Singh PK, Shukla P (2012) Molecular modeling and docking of microbial inulinases towards perceptive enzyme-substrate interactions. Indian J Microbiol 52:373–380

    Article  CAS  Google Scholar 

  • Singh P, Shukla P (2015) Systems biology as an approach for deciphering microbial interactions. Brief Funct Genomics 14:166–168

    Article  CAS  Google Scholar 

  • Singh PK, Joseph J, Goyal S, Grover A, Shukla P (2016) Functional analysis of the binding model of microbial inulinases using docking and molecular dynamics simulation. J Mol Model 22(4):1–7

    Article  CAS  Google Scholar 

  • Soleimani M, Khani A, Najafzadeh K (2012) α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B Enzym 74(1–2):1–5

    Article  CAS  Google Scholar 

  • Soozanipour A, Taheri-Kafrani A, Isfahani AL (2015) Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem Eng J 270:235–243

    Article  CAS  Google Scholar 

  • Soriano M, Diaz P, Pastor FI (2005) Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Curr Microbiol 50(2):114–118

    Article  CAS  Google Scholar 

  • Stafford DE, Gregory S (2001) Metabolic engineering as an integrating platform for strain development. Curr Opin Microbiol 4:336–340

    Article  CAS  Google Scholar 

  • Stafford DE, Yanagimachi KS, Stephanopoulos G (2001) Metabolic engineering of indene bioconversion in Rhodococcus sp. Adv Biochem Eng Biotechnol 73:85–101

    CAS  PubMed  Google Scholar 

  • StrakÅ¡ys A, Kochane T, Budriene S (2016) Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly (urethane urea) microparticles. Food Chem 211:294–299

    Article  Google Scholar 

  • Thanh le T, Murugesan K, Lee CS, Vu CH, Chang YS, Jeon JR (2016) Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads. Bioresour Technol 216:203–210

    Article  Google Scholar 

  • Wang S, Fu X, Liu Y, Liu X, Wang L, Fang J, Wang PG (2015) Probing the roles of conserved residues in uridyltransferase domain of Escherichia coli K12 GlmU by site-directed mutagenesis. Carbohydr Res 413(2):70–74

    Article  CAS  Google Scholar 

  • Xu H, Qin Y, Huang Z, Liu Z (2014) Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium. Enzym Microb Technol 56:46–52

    Article  CAS  Google Scholar 

  • Yadav VG, Mey MD, Lim CG, Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14(3):233–241

    Article  CAS  Google Scholar 

  • Yewale T, Singhal RS, Vaidya A (2013) Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis. Biocatal Agric Biotechnol 2:96–101

    Google Scholar 

  • Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J Biotechnol 140:218–226

    Article  CAS  Google Scholar 

  • Zhang Z, Shimizu Y, Kawarabayasi Y (2015) Characterization of the amino acid residues mediating the unique amino-sugar-1-phosphate acetyltransferase activity of the archaeal ST0452 protein. Extremophiles 19:417–427

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Baweja, M., Liu, H., Shukla, P. (2017). Microbial Enzyme Engineering: Applications and Perspectives. In: Shukla, P. (eds) Recent advances in Applied Microbiology . Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_13

Download citation

Publish with us

Policies and ethics