Skip to main content
Log in

Infinitely many solutions for the stationary fractional \({\varvec{p}}\)-Kirchhoff problems in \(\pmb {\mathbb {R}}^{{\varvec{N}}}\)

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In the present paper, we investigate the existence of multiple solutions for the nonhomogeneous fractional p-Kirchhoff equation

$$\begin{aligned}&M\left( \iint \limits _{ {\mathbb {R}} ^{2N}}\frac{\left| u(x)-u(y)\right| ^{p}}{\left| x-y\right| ^{N+ps}}\mathrm{d}x\mathrm{d}y+\int \limits _{ {\mathbb {R}} ^{N}}V(x)\left| u\right| ^{p}\mathrm{d}x\right) \\&\quad \times (( -\Delta )_{p}^{s}u+V(x)\left| u\right| ^{p-2}u) =f(x,u)\text { in } {\mathbb {R}} ^{N}, \end{aligned}$$

where \(\left( -\Delta \right) _{p}^{s}\) is the fractional p-Laplacian operator, \(0<s<1<p<\infty \) with \(sp<N\), \(M: {\mathbb {R}} _{0}^{+}\rightarrow {\mathbb {R}} _{0}^{+}\) is a nonnegative, continuous and increasing Kirchhoff function, the nonlinearity \(f: {\mathbb {R}} ^{N}\times {\mathbb {R}} \rightarrow {\mathbb {R}} \) is a Carathéodory function that obeys some conditions which will be stated later and \(V\in C( {\mathbb {R}} ^{N}, {\mathbb {R}} ^{+}) \) is a non-negative potential function. We first establish the Bartsch–Pankov–Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the variational method, \((S_{+})\) mapping theory and Krasnoselskii’s genus theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio V, Multiple solutions for a fractional \(p\)-Laplacian equation with sign-changing potential, Electron. J. Differ. Equ.  151 (2016) 1–12

    MathSciNet  MATH  Google Scholar 

  2. Bartsch T, Pankov A and Wang Z Q, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math.  3 (2001) 1–21

    Article  MathSciNet  Google Scholar 

  3. Bartsch T and Wang Z Q, Existence and multiplicity results for some superlinear elliptic problems on \( {\mathbb{R}} ^{N}\), Commun. Partial Differ. Equ.  20 (1995) 1725–1741

    Article  Google Scholar 

  4. Caponi M and Pucci P, Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-Laplacian equations, Ann. Mat. Pura Appl.  195 (2016) 2099–2129

    Article  MathSciNet  Google Scholar 

  5. Chang K C, Critical point theory and applications (1986) (Shanghai Scientific and Technology Press)

  6. Chen P and Tang X H, Existence and multiplicity results for infinitely many solutions for Kirchhoff-type problems in \( {\mathbb{R}} ^{N}\), Math. Method Appl. Sci.  37(12) (2014) 1828–1837

    Article  Google Scholar 

  7. Chen J, Cheng B and Tang X, New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional \(p\)-Laplacian with sign-changing potential, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales  112(1) (2018) 153–176

    MathSciNet  MATH  Google Scholar 

  8. Clarke D C, A variant of the Lusternik–Schnirelman theory, Indiana Univ. Math. J.  22 (1972) 65–74

    Article  MathSciNet  Google Scholar 

  9. Di Nezza E, Palatucci G and Valdinoci E, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math.  136 (2012) 521–573

    Article  MathSciNet  Google Scholar 

  10. Figueiredo G, Molica Bisci G and Servadei R, On a fractional Kirchhoff-type equation via Krasnoselskii’s genus, Asymptot. Anal.  94 (2015) 347-361

    Article  MathSciNet  Google Scholar 

  11. Iannizzotto A, Liu S, Perera K and Squassina M, Existence results for fractional \(p\)-Laplacian problems via Morse theory, Adv. Calc. Var.  9 (2016) 101–125

    Article  MathSciNet  Google Scholar 

  12. Krasnoselskii M A, Topological methods in the theory of nonlinear integral equations (1964) (New York: MacMillan)

  13. Liang S and Zhang J, Multiplicity of solutions for the non co-operative Schr ödinger-Kirchhoff system involving the fractional \(p\)-Laplacian in \( {\mathbb{R}} ^{N}\), Z. Angew. Math. Phys.  68(63) (2017) 1–18

    MathSciNet  Google Scholar 

  14. Molica Bisci G and Rădulescu V, Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differ. Equ.  54 (2015) 2985–3008

    Article  Google Scholar 

  15. Molica Bisci G and Rădulescu V, Multiplicity results for elliptic fractional equations with subcritical term, Nonlinear Differ. Equ. Appl. NoDEA  22(2015) 721–739

    Article  MathSciNet  Google Scholar 

  16. Molica Bisci G and Repovš D, On doubly nonlocal fractional elliptic equations, Rend. Lincei Mat. Appl.  26 (2015) 161–176

    Article  MathSciNet  Google Scholar 

  17. Molica Bisci G and Servadei R, A bifurcation result for nonlocal fractional equations, Anal. Appl.  13 (2015) 371–394

    Article  MathSciNet  Google Scholar 

  18. Natanson I P, Theory of functions of a real variable (1950) (Moscow: Nauka)

  19. Nyamoradi N and Chung N T, Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory, Electron. J. Differ. Equ.  86 (2014) 1–12

    MathSciNet  MATH  Google Scholar 

  20. Nyamoradi N and Zaidan L I, Existence and multiplicity of solutions for fractional \(p\)-Laplacian Schrödinger-Kirchhoff type equations, Complex Var. Elliptic Equ.  63(3) (2018) 346–359

    Article  MathSciNet  Google Scholar 

  21. Pucci P, Xiang M and Zhang B, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \( {\mathbb{R}} ^{N}\), Calc. Var.  54 (2015) 2785–2806

    Article  MathSciNet  Google Scholar 

  22. Pucci P, Xiang M and Zhang B, Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal.  5 (2016) 27–55

    MathSciNet  MATH  Google Scholar 

  23. Piersanti P and Pucci P, Entire solutions for critical \(p\)-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat.  62 (2018) 3–36

    Article  MathSciNet  Google Scholar 

  24. Rabinowitz P, Minimax method in critical point theory with applications to differential equations, CBMS Am. Math. Soc.  65 (1986) 1–100

    MathSciNet  Google Scholar 

  25. Song Y and Shi S, On a Degenerate \(p\)-fractional Kirchhoff equations involving critical Sobolev-Hardy nonlinearities, Mediterr. J. Math.  15(1) (2018) 2–18

    Article  MathSciNet  Google Scholar 

  26. Xiang M, Zhang B and Rădulescu V, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional \(p\) -Laplacian, Nonlinearity  29 (2016) 3186–3205

    Article  MathSciNet  Google Scholar 

  27. Xiang M, Molica Bisci G, Tian G and Zhang B, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional \(p\) -Laplacian, Nonlinearity  29 (2016) 357–374

    Article  MathSciNet  Google Scholar 

  28. Xu J, Wei Z and Dong W, Weak solutions for a fractional \(p\)-Laplacian equation with sign-changing potential, Complex Var. Elliptic Equ.  61(2) (2016) 284–296

    Article  MathSciNet  Google Scholar 

  29. Zeidler E, Nonlinear functional analysis and its applications (1989) (Springer)

  30. Zhang X, Zhang B and Repovš D, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal.  142 (2016) 48–68

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabil Ayazoglu.

Additional information

Communicating Editor: Parameswaran Sankaran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkoyunlu, E., Ayazoglu, R. Infinitely many solutions for the stationary fractional \({\varvec{p}}\)-Kirchhoff problems in \(\pmb {\mathbb {R}}^{{\varvec{N}}}\). Proc Math Sci 129, 68 (2019). https://doi.org/10.1007/s12044-019-0515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-019-0515-7

Keywords

Mathematics Subject Classification

Navigation