Skip to main content

Advertisement

Log in

Considering Context-Specific microRNAs in Ischemic Stroke with Three “W”: Where, When, and What

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs are short non-coding RNA molecules that function as critical regulators of various biological processes through negative regulation of gene expression post-transcriptionally. Recent studies have indicated that microRNAs are potential biomarkers for ischemic stroke. In this review, we first illustrate the pathogenesis of ischemic stroke and demonstrate the biogenesis and transportation of microRNAs from cells. We then discuss several promising microRNA biomarkers in ischemic stroke in a context-specific manner from three dimensions: biofluids selection for microRNA extraction (Where), the timing of sample collection after ischemic stroke onset (When), and the clinical application of the differential-expressed microRNAs during stroke pathophysiology (What). We show that microRNAs have the utilities in ischemic stroke diagnosis, risk stratification, subtype classification, prognosis prediction, and treatment response monitoring. However, there are also obstacles in microRNA biomarker research, and this review will discuss the possible ways to improve microRNA biomarkers. Overall, microRNAs have the potential to assist clinical treatment, and developing microRNA panels for clinical application is worthwhile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528. https://doi.org/10.1161/cir.0000000000000659

    Article  PubMed  Google Scholar 

  2. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8(4):355–369. https://doi.org/10.1016/s1474-4422(09)70025-0

    Article  PubMed  Google Scholar 

  3. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M et al (2013) Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the global burden of disease study 2010. Lancet Glob Health 1(5):e259–281. https://doi.org/10.1016/s2214-109x(13)70089-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meschia JF, Brott T (2018) Ischaemic stroke. Eur J Neurol 25(1):35–40. https://doi.org/10.1111/ene.13409

    Article  CAS  PubMed  Google Scholar 

  5. Zameer S, Siddiqui AS, Riaz R (2021) Multimodality imaging in acute ischemic stroke. Curr Med Imaging 17(5):567–577. https://doi.org/10.2174/1573405616666201130094948

    Article  PubMed  Google Scholar 

  6. Gil-Garcia CA, Flores-Alvarez E, Cebrian-Garcia R, Mendoza-Lopez AC, Gonzalez-Hermosillo LM et al (2022) Essential topics about the imaging diagnosis and treatment of hemorrhagic stroke: a comprehensive review of the 2022 AHA guidelines. Curr Probl Cardiol 47(11):101328. https://doi.org/10.1016/j.cpcardiol.2022.101328

    Article  PubMed  Google Scholar 

  7. Musuka TD, Wilton SB, Traboulsi M, Hill MD (2015) Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ 187(12):887–893. https://doi.org/10.1503/cmaj.140355

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li Y, Zhong W, Jiang Z, Tang X (2019) New progress in the approaches for blood-brain barrier protection in acute ischemic stroke. Brain Res Bull 144:46–57. https://doi.org/10.1016/j.brainresbull.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  9. Berger C, Fiorelli M, Steiner T, Schäbitz WR, Bozzao L et al (2001) Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? Stroke 32(6):1330–1335. https://doi.org/10.1161/01.str.32.6.1330

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Fan CL, Ma LJ, Liu T, Wang C et al (2017) Distinctive expression signatures of serum microRNAs in ischaemic stroke and transient ischaemic attack patients. Thromb Haemost 117(5):992–1001. https://doi.org/10.1160/th16-08-0606

    Article  PubMed  Google Scholar 

  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  12. Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M et al (2017) RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and mir-143-3p as potential biomarkers for acute ischemic stroke. Circ Res 121(8):970–980. https://doi.org/10.1161/circresaha.117.311572

    Article  CAS  PubMed  Google Scholar 

  13. Rainer TH, Leung LY, Chan CPY, Leung YK, Abrigo JM et al (2016) Plasma mir-124-3p and miR-16 concentrations as prognostic markers in acute stroke. Clin Biochem 49(9):663–668. https://doi.org/10.1016/j.clinbiochem.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  14. Kim JM, Jung KH, Chu K, Lee ST, Ban J et al (2015) Atherosclerosis-related circulating MicroRNAs as a predictor of stroke recurrence. Transl Stroke Res 6(3):191–197. https://doi.org/10.1007/s12975-015-0390-1

    Article  CAS  PubMed  Google Scholar 

  15. Zheng L, Xiong Y, Liu J, Yang X, Wang L et al (2019) MMP-9-related microRNAs as prognostic markers for hemorrhagic transformation in cardioembolic stroke patients. Front Neurol 10:945. https://doi.org/10.3389/fneur.2019.00945

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD et al (2009) Expression profile of MicroRNAs in young stroke patients. PLoS ONE 4(11):e7689. https://doi.org/10.1371/journal.pone.0007689

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi Z, Zhao Y, Su Y, Cao B, Yang JJ et al (2021) Serum extracellular vesicle-derived mir-124-3p as a diagnostic and predictive marker for early-stage acute ischemic stroke. Front Mol Biosci 8:685088. https://doi.org/10.3389/fmolb.2021.685088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuang Y, Zheng X, Zhang L, Ai X, Venkataramani V et al (2020) Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles 10(1):e12024. https://doi.org/10.1002/jev2.12024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Gan Y, Xu G, Hua K, Liu D (2020) Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sci 260:118403. https://doi.org/10.1016/j.lfs.2020.118403

    Article  CAS  PubMed  Google Scholar 

  20. Zong P, Feng J, Yue Z, Li Y, Wu G et al (2022) Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron 110(12):1944–1958.e1948. https://doi.org/10.1016/j.neuron.2022.03.021

  21. Taghibiglou C, Martin HG, Lai TW, Cho T, Prasad S et al (2009) Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat Med 15(12):1399–1406. https://doi.org/10.1038/nm.2064

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Lee W, Jo H, Sonn SK, Jeong SJ et al (2022) The antioxidant enzyme peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol 54:102347. https://doi.org/10.1016/j.redox.2022.102347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ni XC, Wang HF, Cai YY, Yang D, Alolga RN et al (2022) Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol 54:102363. https://doi.org/10.1016/j.redox.2022.102363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN et al (2017) Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci 37(1):129–140. https://doi.org/10.1523/jneurosci.2891-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clausen BH, Wirenfeldt M, Høgedal SS, Frich LH, Nielsen HH et al (2020) Characterization of the TNF and IL-1 systems in human brain and blood after ischemic stroke. Acta Neuropathol Commun 8(1):81. https://doi.org/10.1186/s40478-020-00957-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishi T, Maier CM, Hayashi T, Saito A, Chan PH (2005) Superoxide dismutase 1 overexpression reduces MCP-1 and MIP-1 alpha expression after transient focal cerebral ischemia. J Cereb Blood Flow Metab 25(10):1312–1324. https://doi.org/10.1038/sj.jcbfm.9600124

    Article  CAS  PubMed  Google Scholar 

  27. Kang L, Yu H, Yang X, Zhu Y, Bai X et al (2020) Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 11(1):2488. https://doi.org/10.1038/s41467-020-16191-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Liu J, Zhao S, Zhang H, Cai W et al (2016) Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 47(2):498–504. https://doi.org/10.1161/strokeaha.115.012079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ et al (2015) Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 35(32):11281–11291. https://doi.org/10.1523/jneurosci.1685-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shibahara T, Nakamura K, Wakisaka Y, Shijo M, Yamanaka K et al (2023) PDGFRβ-positive cell-mediated post-stroke remodeling of fibronectin and laminin α2 for tissue repair and functional recovery. J Cereb Blood Flow Metab 43(4):518–530. https://doi.org/10.1177/0271678x221145092

    Article  CAS  PubMed  Google Scholar 

  31. Williamson MR, Fuertes CJA, Dunn AK, Drew MR, Jones TA (2021) Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep 35(4):109048. https://doi.org/10.1016/j.celrep.2021.109048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian W, Sawyer A, Kocaoglu FB, Kyriakides TR (2011) Astrocyte-derived thrombospondin-2 is critical for the repair of the blood-brain barrier. Am J Pathol 179(2):860–868. https://doi.org/10.1016/j.ajpath.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tian W, Kyriakides TR (2009) Matrix metalloproteinase-9 deficiency leads to prolonged foreign body response in the brain associated with increased IL-1beta levels and leakage of the blood-brain barrier. Matrix Biol 28(3):148–159. https://doi.org/10.1016/j.matbio.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun F, Mao X, Xie L, Ding M, Shao B et al (2013) Notch1 signaling modulates neuronal progenitor activity in the subventricular zone in response to aging and focal ischemia. Aging Cell 12(6):978–987. https://doi.org/10.1111/acel.12134

    Article  CAS  PubMed  Google Scholar 

  35. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I et al (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28(3):545–554. https://doi.org/10.1002/stem.306

    Article  PubMed  Google Scholar 

  36. Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X et al (2017) Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathol 27(4):480–498. https://doi.org/10.1111/bpa.12425

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Nie EH, Yin Y, Benowitz LI, Tung S et al (2015) GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat Neurosci 18(12):1737–1745. https://doi.org/10.1038/nn.4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ et al (2010) An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 13(12):1496–1504. https://doi.org/10.1038/nn.2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I et al (2012) A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A 109(33):E2230–2239. https://doi.org/10.1073/pnas.1204386109

    Article  PubMed  PubMed Central  Google Scholar 

  40. Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J et al (2019) CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(5):1143–1157e1113. https://doi.org/10.1016/j.cell.2019.01.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orfila JE, Grewal H, Dietz RM, Strnad F, Shimizu T et al (2019) Delayed inhibition of tonic inhibition enhances functional recovery following experimental ischemic stroke. J Cereb Blood Flow Metab 39(6):1005–1014. https://doi.org/10.1177/0271678x17750761

    Article  PubMed  Google Scholar 

  42. Sozmen EG, Rosenzweig S, Llorente IL, DiTullio DJ, Machnicki M et al (2016) Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice. Proc Natl Acad Sci U S A 113(52):E8453–e8462. https://doi.org/10.1073/pnas.1615322113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolf SL, Thompson PA, Winstein CJ, Miller JP, Blanton SR et al (2010) The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke 41(10):2309–2315. https://doi.org/10.1161/strokeaha.110.588723

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gladstone DJ, Danells CJ, Black SE (2002) The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 16(3):232–240. https://doi.org/10.1177/154596802401105171

    Article  PubMed  Google Scholar 

  45. Ward NS, Brander F, Kelly K (2019) Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. J Neurol Neurosurg Psychiatry 90(5):498–506. https://doi.org/10.1136/jnnp-2018-319954

    Article  PubMed  Google Scholar 

  46. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 102(37):13212–13217. https://doi.org/10.1073/pnas.0506306102

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng TL, Wang Z, Liao Q, Zhu Y, Zhou WH et al (2014) MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 28(5):547–560. https://doi.org/10.1016/j.devcel.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  48. Sheng P, Fields C, Aadland K, Wei T, Kolaczkowski O et al (2018) Dicer cleaves 5’-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res 46(11):5737–5752. https://doi.org/10.1093/nar/gky306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zinovyeva AY, Veksler-Lublinsky I, Vashisht AA, Wohlschlegel JA, Ambros VR (2015) Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for argonaute in microRNA guide strand selection and passenger strand disposal. Proc Natl Acad Sci U S A 112(38):E5271–5280. https://doi.org/10.1073/pnas.1506576112

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Redfern AD, Colley SM, Beveridge DJ, Ikeda N, Epis MR et al (2013) RNA-induced silencing complex (RISC) proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci U S A 110(16):6536–6541. https://doi.org/10.1073/pnas.1301620110

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Donnelly BF, Yang B, Grimme AL, Vieux KF, Liu CY et al (2022) The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep 40(6):111154. https://doi.org/10.1016/j.celrep.2022.111154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X (2014) Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30(10):1377–1383. https://doi.org/10.1093/bioinformatics/btu045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chipman LB, Pasquinelli AE (2019) miRNA targeting: growing beyond the seed. Trends Genet 35(3):215–222. https://doi.org/10.1016/j.tig.2018.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q et al (2019) Reassessment of exosome composition. Cell 177(2):428–445e418. https://doi.org/10.1016/j.cell.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murillo OD, Thistlethwaite W, Rozowsky J, Subramanian SL, Lucero R et al (2019) exRNA atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell 177(2):463–477e415. https://doi.org/10.1016/j.cell.2019.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K et al (2019) Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell 177(2):446–462e416. https://doi.org/10.1016/j.cell.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 109(46):18962–18967. https://doi.org/10.1073/pnas.1121288109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Zhao H, Wang J, Gao L, Wang R, Liu X et al (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44(6):1706–1713. https://doi.org/10.1161/strokeaha.111.000504

    Article  CAS  PubMed  Google Scholar 

  59. Li H, Han G, He D, Wang Y, Lin Y et al (2021) miR-539 targeting SNAI2 regulates MMP9 signaling pathway and affects blood-brain barrier permeability in cerebrovascular occlusive diseases: a study based on head and neck ultrasound and CTA. J Healthc Eng 2021(5699025). https://doi.org/10.1155/2021/5699025

  60. He Q, Shi X, Zhou B, Teng J, Zhang C et al (2018) Interleukin 8 (CXCL8)-CXC chemokine receptor 2 (CXCR2) axis contributes to MiR-4437-associated recruitment of granulocytes and natural killer cells in ischemic stroke. Mol Immunol 101:440–449. https://doi.org/10.1016/j.molimm.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  61. Ye Z, Hu J, Xu H, Sun B, Jin Y et al (2021) Serum exosomal microRNA-27-3p aggravates cerebral injury and inflammation in patients with acute cerebral infarction by targeting PPARγ. Inflammation 44(3):1035–1048. https://doi.org/10.1007/s10753-020-01399-3

    Article  CAS  PubMed  Google Scholar 

  62. Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C et al (2021) Adult neural stem cell regulation by small non-coding RNAs: physiological significance and pathological implications. Front Cell Neurosci 15:781434. https://doi.org/10.3389/fncel.2021.781434

    Article  CAS  PubMed  Google Scholar 

  63. Liu X, Fan B, Chopp M, Zhang Z (2020) Epigenetic mechanisms underlying adult post stroke neurogenesis. Int J Mol Sci 21(17). https://doi.org/10.3390/ijms21176179

  64. Hermann DM, Xin W, Bähr M, Giebel B, Doeppner TR (2022) Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: insights from cancer, myocardial infarction and ischemic stroke. Theranostics 12(13):5776–5802. https://doi.org/10.7150/thno.73931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H et al (2018) Impact of microRNAs on ischemic stroke: from pre- to post-disease. Prog Neurobiol 163–164:59–78. https://doi.org/10.1016/j.pneurobio.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  66. Qian Y, Chopp M, Chen J (2020) Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 331:113382. https://doi.org/10.1016/j.expneurol.2020.113382

    Article  CAS  PubMed  Google Scholar 

  67. Ji Q, Ji Y, Peng J, Zhou X, Chen X et al (2016) Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS ONE 11(9):e0163645. https://doi.org/10.1371/journal.pone.0163645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wei N, Xiao L, Xue R, Zhang D, Zhou J et al (2016) MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol 53(10):6809–6817. https://doi.org/10.1007/s12035-015-9605-4

    Article  CAS  PubMed  Google Scholar 

  69. Yuan P, Ding L, Chen H, Wang Y, Li C et al (2021) Neural stem cell-derived exosomes regulate neural stem cell differentiation through Mir-9-Hes1 axis. Front Cell Dev Biol 9:601600. https://doi.org/10.3389/fcell.2021.601600

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xue Y, Li M, Liu D, Zhu Q, Chen H (2018) Expression of miR-9 in the serum of patients with acute ischemic stroke and its effect on neuronal damage. Int J Clin Exp Pathol 11(12):5885–5892

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sørensen SS, Nygaard AB, Carlsen AL, Heegaard NHH, Bak M et al (2017) Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke. Biomark Res 5:24. https://doi.org/10.1186/s40364-017-0104-9

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sun M, Hou X, Ren G, Zhang Y, Cheng H (2019) Dynamic changes in miR-124 levels in patients with acute cerebral infarction. Int J Neurosci 129(7):649–653. https://doi.org/10.1080/00207454.2018.1513931

    Article  CAS  PubMed  Google Scholar 

  73. Liu X, Li F, Zhao S, Luo Y, Kang J et al (2013) MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke 44(7):1973–1980. https://doi.org/10.1161/strokeaha.111.000613

    Article  CAS  PubMed  Google Scholar 

  74. Song Y, Li Z, He T, Qu M, Jiang L et al (2019) M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 9(10):2910–2923. https://doi.org/10.7150/thno.30879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B et al (2013) MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126(2):251–265. https://doi.org/10.1007/s00401-013-1142-5

    Article  CAS  PubMed  Google Scholar 

  76. Yang J, Zhang X, Chen X, Wang L, Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7:278–287. https://doi.org/10.1016/j.omtn.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M (2016) MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 91:151–165. https://doi.org/10.1016/j.biomaterials.2016.03.025

    Article  CAS  PubMed  Google Scholar 

  78. Huang J, Lu W, Doycheva DM, Gamdzyk M, Hu X et al (2020) IRE1α inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model. J Neuroinflammation 17(1):152. https://doi.org/10.1186/s12974-020-01796-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li DB, Liu JL, Wang W, Li RY, Yu DJ et al (2017) Plasma exosomal miR-422a and miR-125b-2-3p serve as biomarkers for ischemic stroke. Curr Neurovasc Res 14(4):330–337. https://doi.org/10.2174/1567202614666171005153434

    Article  CAS  PubMed  Google Scholar 

  80. Chai Z, Zheng P, Zheng J (2021) Mechanism of ARPP21 antagonistic intron miR-128 on neurological function repair after stroke. Ann Clin Transl Neurol 8(7):1408–1421. https://doi.org/10.1002/acn3.51379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Q, Wang F, Fu F, Liu J, Sun W et al (2021) Diagnostic and prognostic value of serum mir-9-5p and mir-128-3p levels in early-stage acute ischemic stroke. Clin (Sao Paulo) 76:e2958. https://doi.org/10.6061/clinics/2021/e2958

    Article  Google Scholar 

  82. Liu P, Han Z, Ma Q, Liu T, Wang R et al (2019) Upregulation of MicroRNA-128 in the peripheral blood of acute ischemic stroke patients is correlated with stroke severity partially through inhibition of neuronal cell cycle reentry. Cell Transpl 28(7):839–850. https://doi.org/10.1177/0963689719846848

    Article  Google Scholar 

  83. Zhang L, Chopp M, Liu X, Teng H, Tang T et al (2012) Combination therapy with VELCADE and tissue plasminogen activator is neuroprotective in aged rats after stroke and targets microRNA-146a and the toll-like receptor signaling pathway. Arterioscler Thromb Vasc Biol 32(8):1856–1864. https://doi.org/10.1161/atvbaha.112.252619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kotb HG, Ibrahim AH, Mohamed EF, Ali OM, Hassanein N et al (2019) The expression of microRNA 146a in patients with ischemic stroke: an observational study. Int J Gen Med 12:273–278. https://doi.org/10.2147/ijgm.S213535

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cai F, Wu F, Cao J, Chen X (2018) MicroRNA-146b-3p regulates the development and progression of cerebral infarction with diabetes through RAF1/P38MAPK/COX-2 signaling pathway. Am J Transl Res 10(2):618–628

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen Z, Wang K, Huang J, Zheng G, Lv Y et al (2018) Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cell Physiol Biochem 45(1):397–405. https://doi.org/10.1159/000486916

    Article  CAS  PubMed  Google Scholar 

  87. Zhang H, Wu J, Wu J, Fan Q, Zhou J et al (2019) Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J Nanobiotechnol 17(1):29. https://doi.org/10.1186/s12951-019-0461-7

    Article  Google Scholar 

  88. Tian H, Zhao Y, Du C, Zong X, Zhang X et al (2021) Expression of miR-210, miR-137, and miR-153 in patients with acute cerebral infarction. Biomed Res Int 2021:4464945. https://doi.org/10.1155/2021/4464945

  89. Rahmati M, Ferns GA, Mobarra N (2021) The lower expression of circulating miR-210 and elevated serum levels of HIF-1α in ischemic stroke; possible markers for diagnosis and disease prediction. J Clin Lab Anal 35(12):e24073. https://doi.org/10.1002/jcla.24073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qiu J, Zhou XY, Zhou XG, Cheng R, Liu HY et al (2013) Neuroprotective effects of microRNA-210 on hypoxic-ischemic encephalopathy. Biomed Res Int 2013:350419. https://doi.org/10.1155/2013/350419

  91. Zeng LL, He XS, Liu JR, Zheng CB, Wang YT et al (2016) Lentivirus-mediated overexpression of MicroRNA-210 improves long-term outcomes after focal cerebral ischemia in mice. CNS Neurosci Ther 22(12):961–969. https://doi.org/10.1111/cns.12589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang J, Zhang Y, Xu F (2018) Function and mechanism of microRNA-210 in acute cerebral infarction. Exp Ther Med 15(2):1263–1268. https://doi.org/10.3892/etm.2017.5577

    Article  CAS  PubMed  Google Scholar 

  93. Zhao J, Gao B, Zhai B (2014) Expression and its significance of microRNA-210 in serum in acute cerebral infarction. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 26(12):910–913. https://doi.org/10.3760/cma.j.issn.2095-4352.2014.12.013

    Article  PubMed  Google Scholar 

  94. Zhang H, Chen G, Qiu W, Pan Q, Chen Y et al (2020) Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke. J Neurosci Res 98(11):2290–2301. https://doi.org/10.1002/jnr.24696

    Article  CAS  PubMed  Google Scholar 

  95. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, Bragin D, Yang Y et al (2015) In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 35(36):12446–12464. https://doi.org/10.1523/jneurosci.1641-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim JH, Kim JY, Park M, Kim S, Kim T et al (2020) NF-κB-dependent miR-31/155 biogenesis is essential for TNF-α-induced impairment of endothelial progenitor cell function. Exp Mol Med 52(8):1298–1309. https://doi.org/10.1038/s12276-020-0478-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang P, Pan R, Weaver J, Jia M, Yang X et al (2021) MicroRNA-30a regulates acute cerebral ischemia-induced blood-brain barrier damage through ZnT4/zinc pathway. J Cereb Blood Flow Metab 41(3):641–655. https://doi.org/10.1177/0271678x20926787

    Article  CAS  PubMed  Google Scholar 

  98. Wang W, Li DB, Li RY, Zhou X, Yu DJ et al (2018) Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal MicroRNA-21-5p and MicroRNA-30a-5p. Cerebrovasc Dis 45(5–6):204–212. https://doi.org/10.1159/000488365

    Article  CAS  PubMed  Google Scholar 

  99. Long G, Wang F, Li H, Yin Z, Sandip C et al (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13:178. https://doi.org/10.1186/1471-2377-13-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guo D, Ma J, Yan L, Li T, Li Z et al (2017) Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem 43(1):182–194. https://doi.org/10.1159/000480337

    Article  CAS  PubMed  Google Scholar 

  101. Cui Y, Ma G, Kong F, Song L (2021) Diagnostic values of mir-221-3p in serum and cerebrospinal fluid for post-stroke depression and analysis of risk factors. Iran J Public Health 50(6):1241–1249. https://doi.org/10.18502/ijph.v50i6.6423

    Article  PubMed  PubMed Central  Google Scholar 

  102. Guo C, Yao Y, Li Q, Gao Y, Cao H (2022) Expression and clinical value of miR-185 and miR-424 in patients with acute ischemic stroke. Int J Gen Med 15:71–78. https://doi.org/10.2147/ijgm.S340586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G et al (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16(9):961–966. https://doi.org/10.1038/nsmb.1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Duan X, Zhan Q, Song B, Zeng S, Zhou J et al (2014) Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J Diabetes Complications 28(5):705–710. https://doi.org/10.1016/j.jdiacomp.2014.04.012

    Article  PubMed  Google Scholar 

  105. Bie X, Zhao H, Zhang Z, Wang X, Luan Y et al (2021) Epigenetic regulation mechanism of DNA methylation and miRNAs on the expression of the ALOX5AP gene in patients with ischemic stroke. Exp Ther Med 22(6):1484. https://doi.org/10.3892/etm.2021.10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948. https://doi.org/10.1083/jcb.101.3.942

    Article  CAS  PubMed  Google Scholar 

  107. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885. https://doi.org/10.1016/j.cub.2009.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30. https://doi.org/10.1038/ncb2000. sup pp 11–13

    Article  CAS  PubMed  Google Scholar 

  109. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685. https://doi.org/10.1038/ncb2502

    Article  CAS  PubMed  Google Scholar 

  110. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  111. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  112. Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J et al (2014) Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12(6):e1001874. https://doi.org/10.1371/journal.pbio.1001874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oraki Kohshour M, Papiol S, Delalle I, Rossner MJ, Schulze TG (2022) Extracellular vesicle approach to major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-022-01497-3

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lee EC, Ha TW, Lee DH, Hong DY, Park SW et al (2022) Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment. Int J Mol Sci 23(15). https://doi.org/10.3390/ijms23158367

  115. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565. https://doi.org/10.1242/jcs.128868

    Article  CAS  PubMed  Google Scholar 

  116. van Kralingen JC, McFall A, Ord ENJ, Coyle TF, Bissett M et al (2019) Altered extracellular vesicle MicroRNA expression in ischemic stroke and small vessel disease. Transl Stroke Res 10(5):495–508. https://doi.org/10.1007/s12975-018-0682-3

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhang G, Chen L, Guo X, Wang H, Chen W et al (2018) Comparative analysis of microRNA expression profiles of exosomes derived from normal and hypoxic preconditioning human neural stem cells by next generation sequencing. J Biomed Nanotechnol 14(6):1075–1089. https://doi.org/10.1166/jbn.2018.2567

    Article  CAS  PubMed  Google Scholar 

  118. Zhou J, Chen L, Chen B, Huang S, Zeng C et al (2018) Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol 18(1):198. https://doi.org/10.1186/s12883-018-1196-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Song P, Sun H, Chen H, Wang Y, Zhang Q (2020) Decreased serum exosomal mir-152-3p contributes to the progression of acute ischemic stroke. Clin Lab 66(8). https://doi.org/10.7754/Clin.Lab.2020.200106

  120. Chen Y, Song Y, Huang J, Qu M, Zhang Y et al (2017) Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol 8:57. https://doi.org/10.3389/fneur.2017.00057

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang S, Jun J, Cong L, Du L, Wang C (2021) miR-328-3p, a predictor of stroke, aggravates the cerebral ischemia-reperfusion Injury. Int J Gen Med 14:2367–2376. https://doi.org/10.2147/ijgm.S307392

    Article  PubMed  PubMed Central  Google Scholar 

  122. Otero-Ortega L, Alonso-López E, Pérez-Mato M, Laso-García F, Gómez-de Frutos MC et al (2021) Circulating extracellular vesicle proteins and microRNA profiles in subcortical and cortical-subcortical ischaemic stroke. Biomedicines 9(7). https://doi.org/10.3390/biomedicines9070786

  123. Zhang Y, Liesz A, Li P (2021) Coming to the rescue: regulatory T cells for promoting recovery after ischemic stroke. Stroke 52(12):e837–e841. https://doi.org/10.1161/strokeaha.121.036072

    Article  CAS  PubMed  Google Scholar 

  124. Bao Z, Zhang S, Li X (2021) MiR-5787 attenuates macrophages-mediated inflammation by targeting TLR4/NF-κB in ischemic cerebral infarction. Neuromolecular Med 23(3):363–370. https://doi.org/10.1007/s12017-020-08628-w

    Article  CAS  PubMed  Google Scholar 

  125. Li L, Xu W, Fu X, Huang Y, Wen Y et al (2020) Blood miR-1275 is associated with risk of ischemic stroke and inhibits macrophage foam cell formation by targeting ApoC2 gene. Gene 731:144364. https://doi.org/10.1016/j.gene.2020.144364

    Article  CAS  PubMed  Google Scholar 

  126. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B et al (2014) microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS ONE 9(6):e99283. https://doi.org/10.1371/journal.pone.0099283

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu da Z, Jickling GC, Ander BP, Hull H, Zhan X et al (2016) Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 36(8):1374–1383. https://doi.org/10.1177/0271678x15610786

    Article  PubMed  Google Scholar 

  128. Bam M, Yang X, Sen S, Zumbrun EE, Dennis L et al (2018) Characterization of dysregulated miRNA in peripheral blood mononuclear cells from ischemic stroke patients. Mol Neurobiol 55(2):1419–1429. https://doi.org/10.1007/s12035-016-0347-8

    Article  CAS  PubMed  Google Scholar 

  129. Jickling GC, Ander BP, Shroff N, Orantia M, Stamova B et al (2016) Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology 87(21):2198–2205. https://doi.org/10.1212/wnl.0000000000003354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang S, Lv Z, Wen Y, Wei Y, Zhou L et al (2019) Mir-129-2-3p directly targets SYK gene and associates with the risk of ischaemic stroke in a Chinese population. J Cell Mol Med 23(1):167–176. https://doi.org/10.1111/jcmm.13901

    Article  CAS  PubMed  Google Scholar 

  131. Li S, Lu G, Wang D, He JL, Zuo L et al (2020) MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur J Neurol 27(8):1625–1637. https://doi.org/10.1111/ene.14282

    Article  CAS  PubMed  Google Scholar 

  132. Kong Y, Li S, Cheng X, Ren H, Zhang B et al (2020) Brain ischemia significantly alters microRNA expression in human peripheral blood natural killer cells. Front Immunol 11:759. https://doi.org/10.3389/fimmu.2020.00759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang H, Wei G, Wang C, Lu Y, Liu C et al (2019) A functional polymorphism in the promoter of mir-17-92 cluster is associated with decreased risk of ischemic stroke. BMC Med Genom 12(1):159. https://doi.org/10.1186/s12920-019-0589-1

    Article  CAS  Google Scholar 

  134. Liu C, Huang H, Li Y, Zhao H (2021) The relationship of long non-coding RNA maternally expressed gene 3 with microRNA-21 and their correlation with acute ischemic stroke risk, disease severity and recurrence risk. Clin Neurol Neurosurg 210:106940. https://doi.org/10.1016/j.clineuro.2021.106940

    Article  PubMed  Google Scholar 

  135. Peng G, Yuan Y, Wu S, He F, Hu Y et al (2015) MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke. Transl Stroke Res 6(6):437–445. https://doi.org/10.1007/s12975-015-0422-x

    Article  CAS  PubMed  Google Scholar 

  136. Sørensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T (2014) miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 5(6):711–718. https://doi.org/10.1007/s12975-014-0364-8

    Article  CAS  PubMed  Google Scholar 

  137. Allen LM, Hasso AN, Handwerker J, Farid H (2012) Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 32(5):1285–1297 discussion 1297 – 1289. https://doi.org/10.1148/rg.325115760

    Article  PubMed  Google Scholar 

  138. Zhang Y, Cheng L, Chen Y, Yang GY, Liu J et al (2016) Clinical predictor and circulating microRNA profile expression in patients with early onset post-stroke depression. J Affect Disord 193:51–58. https://doi.org/10.1016/j.jad.2015.12.061

    Article  CAS  PubMed  Google Scholar 

  139. Burlacu CC, Ciobanu D, Badulescu AV, Chelaru VF, Mitre AO et al (2022) Circulating microRNAs and extracellular vesicle-derived microRNAs as predictors of functional recovery in ischemic stroke patients: a systematic review and meta-analysis. Int J Mol Sci 24(1). https://doi.org/10.3390/ijms24010251

  140. Zhao X, Chen X, Wu X, Zhu L, Long J et al (2021) Machine Learning Analysis of MicroRNA Expression Data Reveals Novel Diagnostic Biomarker for Ischemic Stroke. J Stroke Cerebrovasc Dis 30(8):105825. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105825

  141. Zhong C, Yin C, Niu G, Ning L, Pan J (2021) MicroRNA miR-497 is closely associated with poor prognosis in patients with cerebral ischemic stroke. Bioengineered 12(1):2851–2862. https://doi.org/10.1080/21655979.2021.1940073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang T, Liu R (2021) Dysregulation of miR-637 serves as a diagnostic biomarker in patients with carotid artery stenosis and predicts the occurrence of the cerebral ischemic event. Bioengineered 12(1):8658–8665. https://doi.org/10.1080/21655979.2021.1988369

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhou X, Qi L (2021) miR-124 is downregulated in serum of acute cerebral infarct patients and shows diagnostic and prognostic value. Clin Appl Thromb Hemost 27:10760296211035446. https://doi.org/10.1177/10760296211035446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30(1):92–101. https://doi.org/10.1038/jcbfm.2009.186

    Article  CAS  PubMed  Google Scholar 

  145. Perry JJ, Yadav K, Syed S, Shamy M (2022) Transient ischemic attack and minor stroke: diagnosis, risk stratification and management. CMAJ 194(39):E1344–e1349. https://doi.org/10.1503/cmaj.220344

    Article  PubMed  PubMed Central  Google Scholar 

  146. Adams HP Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24(1):35–41. https://doi.org/10.1161/01.str.24.1.35

    Article  PubMed  Google Scholar 

  147. Tuttolomondo A, Casuccio A, Della Corte V, Maida C, Pecoraro R et al (2017) Endothelial function and arterial stiffness indexes in subjects with acute ischemic stroke: relationship with TOAST subtype. Atherosclerosis 256:94–99. https://doi.org/10.1016/j.atherosclerosis.2016.10.044

    Article  CAS  PubMed  Google Scholar 

  148. Zhang H, Pan Q, Xie Z, Chen Y, Wang J et al (2020) Implication of MicroRNA503 in brain endothelial cell function and ischemic stroke. Transl Stroke Res 11(5):1148–1164. https://doi.org/10.1007/s12975-020-00794-0

    Article  CAS  PubMed  Google Scholar 

  149. Gui Y, Xu Z, Jin T, Zhang L, Chen L et al (2019) Using extracellular circulating micrornas to classify the etiological subtypes of ischemic stroke. Transl Stroke Res 10(4):352–361. https://doi.org/10.1007/s12975-018-0659-2

    Article  CAS  PubMed  Google Scholar 

  150. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337(8756):1521–1526. https://doi.org/10.1016/0140-6736(91)93206-o

    Article  CAS  PubMed  Google Scholar 

  151. Lu WJ, Zeng LL, Wang Y, Zhang Y, Liang HB et al (2018) Blood microRNA-15a correlates with IL-6, IGF-1 and acute cerebral ischemia. Curr Neurovasc Res 15(1):63–71. https://doi.org/10.2174/1567202615666180319143509

    Article  CAS  PubMed  Google Scholar 

  152. Tian C, Li Z, Yang Z, Huang Q, Liu J et al (2016) Plasma MicroRNA-16 is a biomarker for diagnosis, stratification, and prognosis of hyperacute cerebral infarction. PLoS ONE 11(11):e0166688. https://doi.org/10.1371/journal.pone.0166688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hua YJ, Tang ZY, Tu K, Zhu L, Li YX et al (2009) Identification and target prediction of miRNAs specifically expressed in rat neural tissue. BMC Genomics 10:214. https://doi.org/10.1186/1471-2164-10-214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu X, Zhang X, Li D, Zhu Z (2020) Plasma level of miR-99b may serve as potential diagnostic and short-term prognostic markers in patients with acute cerebral infarction. J Clin Lab Anal 34(3):e23093. https://doi.org/10.1002/jcla.23093

    Article  PubMed  PubMed Central  Google Scholar 

  155. Song XD, Li SX, Zhu M (2021) Plasma mir-409-3p promotes acute cerebral infarction via suppressing CTRP3. Kaohsiung J Med Sci 37(4):324–333. https://doi.org/10.1002/kjm2.12327

    Article  CAS  PubMed  Google Scholar 

  156. Venkat P, Cui C, Chopp M, Zacharek A, Wang F et al (2019) MiR-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke 50(10):2865–2874. https://doi.org/10.1161/strokeaha.119.025371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Xin H, Li Y, Liu Z, Wang X, Shang X et al (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31(12):2737–2746. https://doi.org/10.1002/stem.1409

    Article  CAS  PubMed  Google Scholar 

  158. He XW, Shi YH, Liu YS, Li GF, Zhao R et al (2019) Increased plasma levels of miR-124-3p, miR-125b-5p and mir-192-5p are associated with outcomes in acute ischaemic stroke patients receiving thrombolysis. Atherosclerosis 289:36–43. https://doi.org/10.1016/j.atherosclerosis.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  159. Li SH, Su SY, Liu JL (2015) Differential regulation of microRNAs in patients with ischemic stroke. Curr Neurovasc Res 12(3):214–221. https://doi.org/10.2174/1567202612666150605121709

    Article  CAS  PubMed  Google Scholar 

  160. Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ et al (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther 19(10):813–819. https://doi.org/10.1111/cns.12142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL et al (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through notch signaling pathway. PLoS ONE 6(8):e23461. https://doi.org/10.1371/journal.pone.0023461

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang J, Huang Q, Ding J, Wang X (2019) Elevated serum levels of brain-derived neurotrophic factor and miR-124 in acute ischemic stroke patients and the molecular mechanism. 3 Biotech 9(11):386. https://doi.org/10.1007/s13205-019-1914-2

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liu Y, Zhang J, Han R, Liu H, Sun D et al (2015) Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. J Clin Neurosci 22(2):291–295. https://doi.org/10.1016/j.jocn.2014.05.042

    Article  CAS  PubMed  Google Scholar 

  164. Giordano M, Trotta MC, Ciarambino T, D’Amico M, Galdiero M et al (2020) Circulating MiRNA-195-5p and – 451a in diabetic patients with transient and acute ischemic stroke in the emergency department. Int J Mol Sci 21(20). https://doi.org/10.3390/ijms21207615

  165. Giordano M, Ciarambino T, D’Amico M, Trotta MC, Di Sette AM et al (2019) Circulating MiRNA-195-5p and – 451a in transient and acute ischemic stroke patients in an emergency department. J Clin Med 8(2). https://doi.org/10.3390/jcm8020130

  166. Jin F, Xing J (2018) Circulating miR-126 and miR-130a levels correlate with lower disease risk, disease severity, and reduced inflammatory cytokine levels in acute ischemic stroke patients. Neurol Sci 39(10):1757–1765. https://doi.org/10.1007/s10072-018-3499-7

    Article  PubMed  Google Scholar 

  167. Jin F, Xing J (2017) Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci 38(11):2015–2023. https://doi.org/10.1007/s10072-017-3071-x

    Article  PubMed  Google Scholar 

  168. Yang ZB, Zhang Z, Li TB, Lou Z, Li SY et al (2014) Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clin Sci (Lond) 127(12):679–689. https://doi.org/10.1042/cs20140084

    Article  CAS  PubMed  Google Scholar 

  169. de Gonzalo-Calvo D, Marchese M, Hellemans J, Betsou F, Skov Frisk NL et al (2022) Consensus guidelines for the validation of qRT-PCR assays in clinical research by the CardioRNA consortium. Mol Ther Methods Clin Dev 24:171–180. https://doi.org/10.1016/j.omtm.2021.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Eastel JM, Lam KW, Lee NL, Lok WY, Tsang AHF et al (2019) Application of NanoString technologies in companion diagnostic development. Expert Rev Mol Diagn 19(7):591–598. https://doi.org/10.1080/14737159.2019.1623672

    Article  CAS  PubMed  Google Scholar 

  171. Ahmed AA, Farooqi MS, Habeebu SS, Gonzalez E, Flatt TG et al (2022) NanoString digital molecular profiling of protein and microRNA in rhabdomyosarcoma. Cancers (Basel) 14(3). https://doi.org/10.3390/cancers14030522

  172. Feng Y, Li Y, Zhang Y, Zhang BH, Zhao H et al (2021) miR-1224 contributes to ischemic stroke-mediated natural killer cell dysfunction by targeting Sp1 signaling. J Neuroinflammation 18(1):133. https://doi.org/10.1186/s12974-021-02181-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pedrosa L, Hoyos J, Reyes L, Llull L, Santana D et al (2022) MicroRNA cerebrospinal fluid profile during the early brain injury period as a biomarker in subarachnoid hemorrhage patients. Front Cell Neurosci 16:1016814. https://doi.org/10.3389/fncel.2022.1016814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Key R&D Program of China (2018YFA0108600), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-019), the National Natural Science Foundation of China (82170799), and the National High Level Hospital Clinical Research Funding (2022-PUMCH-C-042).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the idea for the article. Chuheng Chang and Youyang Wang performed the literature search, data analysis, and original draft preparation. Renzhi Wang and Xinjie Bao critically revised the work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Chuheng Chang and Youyang Wang contributed equally to this work and should be considered as co-first authors.

Corresponding author

Correspondence to Xinjie Bao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Wang, Y., Wang, R. et al. Considering Context-Specific microRNAs in Ischemic Stroke with Three “W”: Where, When, and What. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04051-5

Keywords

Navigation