Skip to main content

Advertisement

Log in

MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are highly conserved non-coding RNAs modulating gene expression via mRNA binding. Recent work suggests an involvement of miRNAs in cardiovascular diseases including stroke. As such, the brain-abundant miR-124 and its transcriptional repressor RE1-silencing transcription factor (REST) do not only have elementary roles in the developing and the adult brain, but also alter expression upon cerebral ischemia. However, the therapeutic potential of miR-124 against stroke and the mechanisms involved remain elusive. Here, we analyzed the therapeutic potential of ectopic miR-124 against stroke and its underlying mechanisms with regard to the interaction between miR-124 and REST. Our results show that viral vector-mediated miR-124 delivery increased the resistance of cultured oxygen-glucose-deprived cortical neurons in vitro and reduced brain injury as well as functional impairment in mice submitted to middle cerebral artery occlusion. Likewise, miR-124 induced enhanced neurovascular remodeling leading to increased angioneurogenesis 8 weeks post-stroke. While REST abundance increased upon stroke, the increase was prevented by miR-124 despite a so far unknown negative feedback loop between miR-124 and REST. Rather, miR-124 decreased the expression of the deubiquitinating enzyme Usp14, which has two conserved miR-124-binding sites in the 3′UTR of its mRNA, and thereby mediated reduced REST levels. The down-regulation of REST by miR-124 was also mimicked by the Usp14 inhibitor IU-1, suggesting that miR-124 promotes neuronal survival under ischemic conditions via Usp14-dependent REST degradation. Ectopic miR-124 expression, therefore, appears as an attractive and novel tool in stroke treatment, mediating neuroprotection via a hitherto unknown mechanism that involves Usp14-dependent REST degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akerblom M, Sachdeva R, Barde I et al (2012) MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 32:8879–8889

    Article  PubMed  Google Scholar 

  2. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  3. Baroukh NN, Van Obberghen E (2009) Function of microRNA-375 and microRNA-124a in pancreas and brain. FEBS J 276:6509–6521

    Article  PubMed  CAS  Google Scholar 

  4. Baudet ML, Zivraj KH, Abreu-Goodger C et al (2012) miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nat Neurosci 15:29–38

    Article  CAS  Google Scholar 

  5. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    Article  PubMed  CAS  Google Scholar 

  6. Bicker S, Schratt G (2008) MicroRNAs: tiny regulators of synapse function in development and disease. J Cell Mol Med 12:1466–1476

    Article  PubMed  CAS  Google Scholar 

  7. Bingham D, Martin SJ, Macrae IM, Carswell HV (2012) Watermaze performance after middle cerebral artery occlusion in the rat: the role of sensorimotor versus memory impairments. J Cereb Blood Flow Metab 32:989–999

    Article  PubMed  Google Scholar 

  8. Bonauer A, Carmona G, Iwasaki M et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713

    Article  PubMed  CAS  Google Scholar 

  9. Buller B, Liu X, Wang X et al (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277:4299–4307

    Google Scholar 

  10. Calderone A, Jover T, Noh KM et al (2003) Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 23:2112–2121

    PubMed  CAS  Google Scholar 

  11. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408

    Article  PubMed  CAS  Google Scholar 

  12. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427

    Article  PubMed  CAS  Google Scholar 

  13. Cramer SC, Chopp M (2000) Recovery recapitulates ontogeny. Trends Neurosci 23:265–271

    Article  PubMed  CAS  Google Scholar 

  14. Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687

    Article  PubMed  CAS  Google Scholar 

  15. Doeppner TR, Grune T, de Groot H, Rauen U (2003) Cold-induced apoptosis of rat liver endothelial cells: involvement of the proteasome. Transplantation 75:1946–1953

    Article  PubMed  Google Scholar 

  16. Doeppner TR, El Aanbouri M, Dietz GP, Weise J, Schwarting S, Bahr M (2010) Transplantation of TAT-Bcl-xL-transduced neural precursor cells: long-term neuroprotection after stroke. Neurobiol Dis 40:265–276

    Article  PubMed  CAS  Google Scholar 

  17. Doeppner TR, Bretschneider E, Doehring M et al (2011) Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia. Acta Neuropathol 122:429–442

    Article  PubMed  CAS  Google Scholar 

  18. Doeppner TR, Kaltwasser B, ElAli A, Zechariah A, Hermann DM, Bahr M (2011) Acute hepatocyte growth factor treatment induces long-term neuroprotection and stroke recovery via mechanisms involving neural precursor cell proliferation and differentiation. J Cereb Blood Flow Metab 31:1251–1262

    Article  PubMed  CAS  Google Scholar 

  19. Fiore R, Siegel G, Schratt G (2008) MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta 1779:471–478

    Article  PubMed  CAS  Google Scholar 

  20. Gao FB (2010) Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 5:25

    Google Scholar 

  21. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146

    Article  PubMed  CAS  Google Scholar 

  22. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  PubMed  CAS  Google Scholar 

  23. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA 109:18962–18967

    Article  PubMed  CAS  Google Scholar 

  24. Hendrickson DG, Hogan DJ, McCullough HL et al (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238

    Article  PubMed  Google Scholar 

  25. Hermann DM, Chopp M (2012) Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 11:369–380

    Article  PubMed  Google Scholar 

  26. Huang Z, Wu Q, Guryanova OA et al (2011) Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat Cell Biol 13:142–152

    Article  PubMed  CAS  Google Scholar 

  27. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966

    Article  PubMed  CAS  Google Scholar 

  28. Ji R, Cheng Y, Yue J et al (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    Article  PubMed  CAS  Google Scholar 

  29. Lau P, Hudson LD (2010) MicroRNAs in neural cell differentiation. Brain Res 1338:14–19

    Article  PubMed  CAS  Google Scholar 

  30. Lee BH, Lee MJ, Park S et al (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179–184

    Google Scholar 

  31. Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10(5):R110.003871

    Google Scholar 

  32. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Schrodi S, Rowland C, Tacey K, Catanese J, Grupe A (2006) Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Hum Mutat 27:1017–1023

    Article  PubMed  CAS  Google Scholar 

  34. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  35. Liu DZ, Tian Y, Ander BP et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    Google Scholar 

  36. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778

    PubMed  CAS  Google Scholar 

  37. Liu K, Liu Y, Mo W et al (2011) MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 39:2869–2879

    Article  PubMed  CAS  Google Scholar 

  38. Liu XS, Chopp M, Zhang RL et al (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS ONE 6:e23461

    Article  PubMed  CAS  Google Scholar 

  39. Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T (2007) RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res 1131:37–43

    Article  PubMed  CAS  Google Scholar 

  40. Noll T, de Groot H, Sies H (1987) Distinct temporal relation among oxygen uptake, malondialdehyde formation, and low-level chemiluminescence during microsomal lipid peroxidation. Arch Biochem Biophys 252:284–291

    Article  PubMed  CAS  Google Scholar 

  41. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477

    Article  PubMed  Google Scholar 

  42. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17:64–70

    Article  PubMed  CAS  Google Scholar 

  43. Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43:521–528

    Article  PubMed  CAS  Google Scholar 

  44. Rossbach M (2011) Non-coding RNAs in neural networks, REST-assured. Front Genet 2:8

    Article  PubMed  Google Scholar 

  45. Saito K, Kobayashi C, Ikeda M (2008) Effect of radical scavenger N-tert-butyl-alpha-phenylnitrone on stroke in a rat model using a telemetric system. J Pharm Pharm Sci 11:25–31

    PubMed  CAS  Google Scholar 

  46. Sanuki R, Onishi A, Koike C et al (2011) miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14:1125–1134

    Article  PubMed  CAS  Google Scholar 

  47. Saugstad JA (2010) MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 30:1564–1576

    Article  PubMed  CAS  Google Scholar 

  48. Selvamani A, Sathyan P, Miranda RC, Sohrabji F (2012) An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS ONE 7:e32662

    Article  PubMed  CAS  Google Scholar 

  49. Siegel C, Li J, Liu F, Benashski SE, McCullough LD (2011) miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci USA 108:11662–11667

    Article  PubMed  CAS  Google Scholar 

  50. Sonntag KC (2010) MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 1338:48–57

    Article  PubMed  CAS  Google Scholar 

  51. Tan KS, Armugam A, Sepramaniam S et al (2009) Expression profile of MicroRNAs in young stroke patients. PLoS ONE 4:e7689

    Article  PubMed  Google Scholar 

  52. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  PubMed  CAS  Google Scholar 

  53. Vemuganti R (2010) The microRNAs and stroke: no need to be coded to be counted. Transl Stroke Res 1:158–160

    Google Scholar 

  54. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    Article  PubMed  CAS  Google Scholar 

  55. Weng H, Shen C, Hirokawa G et al (2011) Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res 32:135–141

    Article  PubMed  CAS  Google Scholar 

  56. Westbrook TF, Hu G, Ang XL et al (2008) SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452:370–374

    Article  PubMed  CAS  Google Scholar 

  57. Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7:R85

    Article  PubMed  Google Scholar 

  58. Yamashita T, Ninomiya M, Hernandez Acosta P et al (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636

    Article  PubMed  CAS  Google Scholar 

  59. Yin KJ, Deng Z, Huang H et al (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38:17–26

    Article  PubMed  CAS  Google Scholar 

  60. Yoo AS, Sun AX, Li L et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231

    Article  PubMed  CAS  Google Scholar 

  61. Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314:2618–2633

    Article  PubMed  CAS  Google Scholar 

  62. Zeng L, Liu J, Wang Y et al (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed) 3:1265–1272

    Google Scholar 

Download references

Acknowledgments

The authors thank Jaya Visvanathan (Baylor College of Medicine, Houston, TX) for the generous gift of the pGL3-SCP1-3′ UTR plasmid and Fiona Doetsch (Columbia State University, OH) for kindly providing the psiCHECK2-renilla-Sox9 and the pCRII-TOPO- mmmiR-124-3 vectors. Supported by the Deutsche Forschungsgemeinschaft (DFG; HE3173/2-1 and HE3173/3-1).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thorsten R. Doeppner or Uwe Michel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doeppner, T.R., Doehring, M., Bretschneider, E. et al. MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126, 251–265 (2013). https://doi.org/10.1007/s00401-013-1142-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1142-5

Keywords

Navigation