Skip to main content
Log in

The Role of Astrocytic Mitochondria in the Pathogenesis of Brain Ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The morbidity rate of ischemic stroke is increasing annually with the growing aging population in China. Astrocytes are ubiquitous glial cells in the brain and play a crucial role in supporting neuronal function and metabolism. Increasing evidence shows that the impairment or loss of astrocytes contributes to neuronal dysfunction during cerebral ischemic injury. The mitochondrion is increasingly recognized as a key player in regulating astrocyte function. Changes in astrocytic mitochondrial function appear to be closely linked to the homeostasis imbalance defects in glutamate metabolism, Ca2+ regulation, fatty acid metabolism, reactive oxygen species, inflammation, and copper regulation. Here, we discuss the role of astrocytic mitochondria in the pathogenesis of brain ischemic injury and their potential as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AGCs:

Aspartate/glutamate carriers

ASC:

Apoptosis-associated speck-like protein containing a CARD

ApoE:

Apolipoproteins

Ca2+ :

Calcium

Cx43:

Connexin 43

Cu:

Copper

EAAC1:

Excitatory amino acid carrier 1

EAATs:

Excitatory amino acid transporters

ER:

Endoplasmic reticulum

FAO:

Mitochondrial fatty acid oxidation

FAs:

Fatty acids

GC:

Glutamate carriers

GCL:

Glutamate cysteine ligase

GDH:

Glutamate dehydrogenase

GLP:

Glucagon-like peptide

GJA1-20K:

20-kilodalton isoform

GS:

Glutamine synthetase

GSH:

Glutathione

HADHA:

Hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase

IP3R:

Inositol 1,4,5-trisphosphate receptor

IL-1β:

Interleukin-1β

IL-18:

Interleukin-18

α-KG:

α-ketoglutarate

KO:

Knockout

LDs:

Lipid droplets

MCU:

Mitochondrial calcium uniporter

MICU:

Mitochondrial calcium uptake

Miro-1:

Mitochondrial Rho-GTPase 1

mPTP:

Mitochondrial permeability transition pore

mtDNA:

Mitochondria DNA

NCLX:

Mitochondrial Na+/Ca2+ exchanger

NLRP3:

Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3

Nrf2:

Nuclear erythroid 2-related factor 2

OGD:

Oxygen-glucose deprivation

O–GlcNAc:

O-linked N-acetylglucosamine

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator-1α

ROS:

Reactive oxygen species

SDH:

Succinate dehydrogenase

TCA:

Tricarboxylic acid

T3:

3,3,5 Triiodo-L-thyronine

References

  1. Johnson W, Onuma O, Owolabi M, Sachdev S (2016) Stroke: a global response is needed. Bull World Health Organ 94(9):634–634A. https://doi.org/10.2471/BLT.16.181636

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tu W-J, Wang L-D, Yan F, Peng B, Hua Y, Liu M, Ji X-M, Ma L et al (2023) China stroke surveillance report 2021. Mil Med Res 10(1). https://doi.org/10.1186/s40779-023-00463-x

  3. Tu W-J, Zhao Z, Yin P, Cao L, Zeng J, Chen H, Fan D, Fang Q et al (2023) Estimated burden of stroke in China in 2020. JAMA Netw Open 6(3). https://doi.org/10.1001/jamanetworkopen.2023.1455

  4. Ma Q, Li R, Wang L, Yin P, Wang Y, Yan C, Ren Y, Qian Z et al (2021) Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 6(12):e897–e906. https://doi.org/10.1016/s2468-2667(21)00228-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198. https://doi.org/10.1016/j.neuron.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59(3):467–477. https://doi.org/10.1002/ana.20741

    Article  CAS  PubMed  Google Scholar 

  7. Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244. https://doi.org/10.1016/j.nbd.2015.05.003

    Article  PubMed  Google Scholar 

  8. Hong Y, Liu Q, Peng M, Bai M, Li J, Sun R, Guo H, Xu P et al (2020) High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation 17(1):150. https://doi.org/10.1186/s12974-020-01747-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rakers C, Schleif M, Blank N, Matušková H, Ulas T, Händler K, Torres SV, Schumacher T et al (2019) Stroke target identification guided by astrocyte transcriptome analysis. Glia 67(4):619–633. https://doi.org/10.1002/glia.23544

    Article  PubMed  Google Scholar 

  10. Baldwin KT, Eroglu C (2017) Molecular mechanisms of astrocyte-induced synaptogenesis. Curr Opin Neurobiol 45:113–120. https://doi.org/10.1016/j.conb.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahmoud S, Gharagozloo M, Simard C, Gris D (2019) Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8(2). https://doi.org/10.3390/cells8020184

  12. Posada-Duque RA, Barreto GE, Cardona-Gomez GP (2014) Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8:231. https://doi.org/10.3389/fncel.2014.00231

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poskanzer KE, Molofsky AV (2018) Dynamism of an astrocyte in vivo: perspectives on identity and function. Annu Rev Physiol 80:143–157. https://doi.org/10.1146/annurev-physiol-021317-121125

    Article  CAS  PubMed  Google Scholar 

  14. Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L et al (2021) Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation 18(1):230. https://doi.org/10.1186/s12974-021-02284-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang Y, Wang Y, Yang G-Y, Zhang Z, Guo Y, Chen T, Deng L et al (2022) Blocking C3d+/GFAP+ A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke. Aging Dis 13(3). https://doi.org/10.14336/ad.2021.1029

  16. Wang C, Li L (2023) The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke. J Neuroinflammation 20(1):44. https://doi.org/10.1186/s12974-023-02742-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finkel T, Menazza S, Holmström KM, Parks RJ, Liu J, Sun J, Liu J, Pan X et al (2015) The ins and outs of mitochondrial calcium. Circ Res 116(11):1810–1819. https://doi.org/10.1161/CIRCRESAHA.116.305484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Omidian K, Rafiei H, Bandy B (2020) Increased mitochondrial content and function by resveratrol and select flavonoids protects against benzo[a]pyrene-induced bioenergetic dysfunction and ROS generation in a cell model of neoplastic transformation. Free Radic Biol Med 152:767–775. https://doi.org/10.1016/j.freeradbiomed.2020.01.021

    Article  CAS  PubMed  Google Scholar 

  19. Yamashita S-I, Kanki T (2017) How autophagy eats large mitochondria: autophagosome formation coupled with mitochondrial fragmentation. Autophagy 13(5):980–981. https://doi.org/10.1080/15548627.2017.1291113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bambrick L, Kristian T, Fiskum G (2004) Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res 29(3):601–608. https://doi.org/10.1023/b:nere.0000014830.06376.e6

    Article  CAS  PubMed  Google Scholar 

  21. Gabryel B, Trzeciak H (2001) Role of astrocytes in pathogenesis of ischemic brain injury. Neurotox Res 3(2):205–221. https://doi.org/10.1007/BF03033192

    Article  CAS  PubMed  Google Scholar 

  22. Chamorro A, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15(8):869–881. https://doi.org/10.1016/S1474-4422(16)00114-9

    Article  CAS  PubMed  Google Scholar 

  23. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493. https://doi.org/10.1002/jcp.22609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Magi S, Piccirillo S, Amoroso S, Lariccia V (2019) Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int J Mol Sci 20(22). https://doi.org/10.3390/ijms20225674

  25. Rothstein J, Martin L, Levey A, Jin L, Wu D, Nash N, Kuncl R (1994) Localization of neuronal and glial glutamate transporters. NEURON 13(3):713–725. https://doi.org/10.1016/0896-6273(94)90038-8

    Article  CAS  PubMed  Google Scholar 

  26. Magi S, Piccirillo S, Amoroso S (2019) The dual face of glutamate: from a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell Mol Life Sci 76(8):1473–1488. https://doi.org/10.1007/s00018-018-3002-x

    Article  CAS  PubMed  Google Scholar 

  27. Brusilow S, Koehler R, Traystman R, Cooper A (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. NEUROTHERAPEUTICS 7(4):452–470. https://doi.org/10.1016/j.nurt.2010.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41(6):1518–1524. https://doi.org/10.1042/BST20130237

    Article  CAS  PubMed  Google Scholar 

  29. Hoshi A, Nakahara T, Kayama H, Yamamoto T (2006) Ischemic tolerance in chemical preconditioning: possible role of astrocytic glutamine synthetase buffering glutamate-mediated neurotoxicity. J Neurosci Res 84(1):130–141. https://doi.org/10.1002/jnr.20869

    Article  CAS  PubMed  Google Scholar 

  30. Song X, Gong Z, Liu K, Kou J, Liu B, Liu K (2020) Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol 34:101559. https://doi.org/10.1016/j.redox.2020.101559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cavero S, Vozza A, del Arco A, Palmieri L, Villa A, Blanco E, Runswick MJ, Walker JE et al (2003) Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae. Mol Microbiol 50(4):1257–1269. https://doi.org/10.1046/j.1365-2958.2003.03742.x

    Article  CAS  PubMed  Google Scholar 

  32. Lasorsa FM, Pinton P, Palmieri L, Fiermonte G, Rizzuto R, Palmieri F (2003) Recombinant expression of the Ca(2+)-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells. J Biol Chem 278(40):38686–38692. https://doi.org/10.1074/jbc.M304988200

    Article  CAS  PubMed  Google Scholar 

  33. Boulay A-C, Saubaméa B, Adam N, Chasseigneaux S, Mazaré N, Gilbert A, Bahin M, Bastianelli L et al (2017) Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell discovery 3:17005. https://doi.org/10.1038/celldisc.2017.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103. https://doi.org/10.1002/glia.20990

    Article  PubMed  Google Scholar 

  35. Goubert E, Mircheva Y, Lasorsa FM, Melon C, Profilo E, Sutera J, Becq H, Palmieri F et al (2017) Inhibition of the mitochondrial glutamate carrier SLC25A22 in astrocytes leads to intracellular glutamate accumulation. Front Cell Neurosci 11:149. https://doi.org/10.3389/fncel.2017.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim AY, Jeong K-H, Lee JH, Kang Y, Lee SH, Baik EJ (2017) Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 340:487–500. https://doi.org/10.1016/j.neuroscience.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  37. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B et al (2014) The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510(7505):397–401. https://doi.org/10.1038/nature13264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baracco EE, Castoldi F, Durand S, Enot DP, Tadic J, Kainz K, Madeo F, Chery A et al (2019) α-Ketoglutarate inhibits autophagy. Aging 11(11):3418–3431. https://doi.org/10.18632/aging.102001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang J-Y, Zhou B, Sun R-Y, Ai Y-L, Cheng K, Li F-N, Wang B-R, Liu F-J et al (2021) The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. https://doi.org/10.1038/s41422-021-00506-9

  40. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578. https://doi.org/10.1038/nrm3412

    Article  CAS  PubMed  Google Scholar 

  41. Rusakov DA, Bard L, Stewart MG, Henneberger C (2014) Diversity of astroglial functions alludes to subcellular specialisation. Trends Neurosci 37(4):228–242. https://doi.org/10.1016/j.tins.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  42. Agarwal A, Wu P-H, Hughes EG, Fukaya M, Tischfield MA, Langseth AJ, Wirtz D, Bergles DE (2017) Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93(3). https://doi.org/10.1016/j.neuron.2016.12.034

  43. Jackson JG, Robinson MB (2015) Reciprocal regulation of mitochondrial dynamics and calcium signaling in astrocyte processes. J Neurosci 35(45):15199–15213. https://doi.org/10.1523/JNEUROSCI.2049-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okubo Y, Kanemaru K, Suzuki J, Kobayashi K, Hirose K, Iino M (2019) Inositol 1,4,5-trisphosphate receptor type 2-independent Ca release from the endoplasmic reticulum in astrocytes. Glia 67(1):113–124. https://doi.org/10.1002/glia.23531

    Article  PubMed  Google Scholar 

  45. Katona M, Bartok A, Nichtova Z, Csordas G, Berezhnaya E, Weaver D, Ghosh A, Varnai P et al (2022) Capture at the ER-mitochondrial contacts licenses IP(3) receptors to stimulate local Ca(2+) transfer and oxidative metabolism. Nat Commun 13(1):6779. https://doi.org/10.1038/s41467-022-34365-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565. https://doi.org/10.1146/annurev-pharmtox-010715-103335

    Article  CAS  PubMed  Google Scholar 

  47. Cabral-Costa JV, Vicente-Gutierrez C, Agulla J, Lapresa R, Elrod JW, Almeida A, Bolanos JP, Kowaltowski AJ (2023) Mitochondrial sodium/calcium exchanger NCLX regulates glycolysis in astrocytes, impacting on cognitive performance. J Neurochem 165(4):521–535. https://doi.org/10.1111/jnc.15745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S et al (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32(17):2362–2376. https://doi.org/10.1038/emboj.2013.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nichols M, Elustondo PA, Warford J, Thirumaran A, Pavlov EV, Robertson GS (2017) Global ablation of the mitochondrial calcium uniporter increases glycolysis in cortical neurons subjected to energetic stressors. J Cereb Blood Flow Metab 37(8):3027–3041. https://doi.org/10.1177/0271678X16682250

    Article  CAS  PubMed  Google Scholar 

  50. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II et al (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472. https://doi.org/10.1038/ncb2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xing Y, Wang M, Wang J, Nie Z, Wu G, Yang X, Shen Y (2019) Dimerization of MICU proteins controls Ca influx through the mitochondrial Ca uniporter. Cell Rep 26(5). https://doi.org/10.1016/j.celrep.2019.01.022

  52. Qin J, Liu L, Liu L, Zhou Z, Zhou Y, Zhang K, Wang B, Lu H et al (2023) The effect of regulating MCU expression on experimental ischemic brain injury. Exp Neurol 362:114329. https://doi.org/10.1016/j.expneurol.2023.114329

    Article  CAS  PubMed  Google Scholar 

  53. Stevic N, Maalouf J, Argaud L, Gallo-Bona N, Lo Grasso M, Gouriou Y, Gomez L, Crola Da Silva C et al (2022) Cooling uncouples differentially ROS production from respiration and Ca(2+) homeostasis dynamic in brain and heart mitochondria. Cells 11(6). https://doi.org/10.3390/cells11060989

  54. Minelli A, Castaldo P, Gobbi P, Salucci S, Magi S, Amoroso S (2007) Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41(3):221–234. https://doi.org/10.1016/j.ceca.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  55. Sakaue M, Nakamura H, Kaneko I, Kawasaki Y, Arakawa N, Koyama Y, Koyama Y, Matsuda T (2000) Na(+)-Ca(2+) exchanger isoforms in rat neuronal preparations: different changes in their expression during postnatal development. Brain Res 881(2):212–216. https://doi.org/10.1016/s0006-8993(00)02808-0

    Article  CAS  PubMed  Google Scholar 

  56. Thurneysen T, Nicoll D, Philipson K, Porzig H (2002) Sodium/calcium exchanger subtypes NCX1, NCX2 and NCX3 show cell-specific expression in rat hippocampus cultures. Mol Brain Res 107(2):145–156. https://doi.org/10.1016/s0169-328x(02)00461-8

    Article  CAS  PubMed  Google Scholar 

  57. Kintner DB, Luo J, Gerdts J, Ballard AJ, Shull GE, Sun D (2007) Role of Na+-K+-Cl- cotransport and Na+/Ca2+ exchange in mitochondrial dysfunction in astrocytes following in vitro ischemia. Am J Physiol Cell Physiol 292(3):C1113–C1122. https://doi.org/10.1152/ajpcell.00412.2006

    Article  CAS  PubMed  Google Scholar 

  58. Casamassa A, Cuomo O, Pannaccione A, Cepparulo P, Laudati G, Valsecchi V, Annunziato L, Pignataro G (2022) In brain post-ischemic plasticity, Na(+)/Ca(2+) exchanger 1 and Ascl1 intervene in microglia-dependent conversion of astrocytes into neuronal lineage. Cell Calcium 105:102608. https://doi.org/10.1016/j.ceca.2022.102608

    Article  CAS  PubMed  Google Scholar 

  59. Stokum J, Shim B, Negoita S, Negoita S, Tsymbalyuk O, Ivanova S, Keledjian K, Bryan J et al (2023) Cation flux through SUR1-TRPM4 and NCX1 in astrocyte endfeet induces water influx through AQP4 and brain swelling after ischemic stroke. Sci Signal 16(778):eadd6364. https://doi.org/10.1126/scisignal.add6364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23(13):5928–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS et al (2019) Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177(6):1522–1535 e14. https://doi.org/10.1016/j.cell.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  62. Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, Postle AD, Gould AP (2015) Antioxidant role for lipid droplets in a stem cell niche of drosophila. Cell 163(2):340–353. https://doi.org/10.1016/j.cell.2015.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J et al (2015) Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160(1-2):177–190. https://doi.org/10.1016/j.cell.2014.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18(4):551–561. https://doi.org/10.1002/jnr.490180407

    Article  CAS  PubMed  Google Scholar 

  65. Eraso-Pichot A, Braso-Vives M, Golbano A, Menacho C, Claro E, Galea E, Masgrau R (2018) GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia 66(8):1724–1735. https://doi.org/10.1002/glia.23330

    Article  PubMed  Google Scholar 

  66. Escartin C, Pierre K, Colin A, Brouillet E, Delzescaux T, Guillermier M, Dhenain M, Déglon N et al (2007) Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J Neurosci 27(27):7094–7104. https://doi.org/10.1523/JNEUROSCI.0174-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sayre NL, Sifuentes M, Holstein D, Cheng SY, Zhu X, Lechleiter JD (2017) Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J Cereb Blood Flow Metab 37(2):514–527. https://doi.org/10.1177/0271678X16629153

    Article  PubMed  Google Scholar 

  68. Timper K, Del Río-Martín A, Cremer AL, Bremser S, Alber J, Giavalisco P, Varela L, Heilinger C et al (2020) GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab 31(6). https://doi.org/10.1016/j.cmet.2020.05.001

  69. Shan Y, Tan S, Lin Y, Liao S, Zhang B, Chen X, Wang J, Deng Z et al (2019) The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation 16(1):242. https://doi.org/10.1186/s12974-019-1638-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S et al (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012:329635. https://doi.org/10.1155/2012/329635

    Article  CAS  PubMed  Google Scholar 

  71. Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503. https://doi.org/10.1016/j.redox.2018.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schreiner B, Romanelli E, Liberski P, Ingold-Heppner B, Sobottka-Brillout B, Hartwig T, Chandrasekar V, Johannssen H et al (2015) Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep 12(9):1377–1384. https://doi.org/10.1016/j.celrep.2015.07.051

    Article  CAS  PubMed  Google Scholar 

  73. Almeida A, Delgado-Esteban M, Bolaños JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81(2):207–217. https://doi.org/10.1046/j.1471-4159.2002.00827.x

    Article  CAS  PubMed  Google Scholar 

  74. Yin B, Barrionuevo G, Weber SG (2018) Mitochondrial GSH systems in CA1 pyramidal cells and astrocytes react differently during oxygen-glucose deprivation and reperfusion. ACS Chem Neurosci 9(4):738–748. https://doi.org/10.1021/acschemneuro.7b00369

    Article  CAS  PubMed  Google Scholar 

  75. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    Article  CAS  PubMed  Google Scholar 

  77. Yanagida T, Tsushima J, Kitamura Y, Yanagisawa D, Takata K, Shibaike T, Yamamoto A, Taniguchi T et al (2009) Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury. Oxidative Med Cell Longev 2(1):36–42. https://doi.org/10.1093/jn/134.3.489

    Article  Google Scholar 

  78. Mullett SJ, Hamilton RL, Hinkle DA (2009) DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathology 29(2):125–131. https://doi.org/10.1111/j.1440-1789.2008.00955.x

    Article  PubMed  Google Scholar 

  79. Narayanan S, Dave K, MJTSR P-P (2018) Ischemic preconditioning protects astrocytes against oxygen glucose deprivation via the nuclear erythroid 2-related factor 2 pathway. Transl Stroke Res 9(2):99–109. https://doi.org/10.1007/s12975-017-0574-y

    Article  CAS  PubMed  Google Scholar 

  80. Aleyasin H, Rousseaux MWC, Phillips M, Kim RH, Bland RJ, Callaghan S, Slack RS, During MJ et al (2007) The Parkinson’s disease gene DJ-1 is also a key regulator of stroke-induced damage. Proc Natl Acad Sci U S A 104(47):18748–18753. https://doi.org/10.1073/pnas.0709379104

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yanagida T, Tsushima J, Kitamura Y, Yanagisawa D, Takata K, Shibaike T, Yamamoto A, Taniguchi T et al (2009) Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury. Oxidative Med Cell Longev 2(1):36–42. https://doi.org/10.4161/oxim.2.1.7985

    Article  Google Scholar 

  82. Larsen NJ, Ambrosi G, Mullett SJ, Berman SB, Hinkle DA (2011) DJ-1 knock-down impairs astrocyte mitochondrial function. Neuroscience 196:251–264. https://doi.org/10.1016/j.neuroscience.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  83. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JPY (2006) DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A 103(41):15091–15096. https://doi.org/10.1073/pnas.0607260103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X et al (2008) Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 178(6):592–604. https://doi.org/10.1164/rccm.200803-380OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bitar MS, Liu C, Ziaei A, Chen Y, Schmedt T, Jurkunas UV (2012) Decline in DJ-1 and decreased nuclear translocation of Nrf2 in Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53(9):5806–5813. https://doi.org/10.1167/iovs.12-10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peng L, Zhao Y, Li Y, Zhou Y, Li L, Lei S, Yu S, Zhao Y (2019) Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury. J Mol Med (Berl) 97(2):189–199. https://doi.org/10.1007/s00109-018-1719-5

    Article  CAS  PubMed  Google Scholar 

  87. Lim J, Nakamura BN, Mohar I, Kavanagh TJ, Luderer U (2015) Glutamate cysteine ligase modifier subunit (Gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure. Endocrinology 156(9):3329–3343. https://doi.org/10.1210/en.2015-1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schaupp CM, Botta D, White CC, Scoville DK, Srinouanprachanh S, Bammler TK, MacDonald J, Kavanagh TJ (2022) Persistence of improved glucose homeostasis in Gclm null mice with age and cadmium treatment. Redox Biol 49:102213. https://doi.org/10.1016/j.redox.2021.102213

    Article  CAS  PubMed  Google Scholar 

  89. Arany Z, Foo S-Y, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451(7181):1008–1012. https://doi.org/10.1038/nature06613

    Article  CAS  PubMed  Google Scholar 

  90. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127(1):59–69. https://doi.org/10.1016/j.cell.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  91. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408. https://doi.org/10.1016/j.cell.2006.09.024

    Article  CAS  PubMed  Google Scholar 

  92. Guo X, Jiang Q, Tuccitto A, Chan D, Alqawlaq S, Won GJ, Sivak JM (2018) The AMPK-PGC-1alpha signaling axis regulates the astrocyte glutathione system to protect against oxidative and metabolic injury. Neurobiol Dis 113:59–69. https://doi.org/10.1016/j.nbd.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  93. Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18(9):2114–2127. https://doi.org/10.1038/s41423-021-00740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Possemato E, La Barbera L, Nobili A, Krashia P, D'Amelio M (2023) The role of dopamine in NLRP3 inflammasome inhibition: implications for neurodegenerative diseases. Ageing Res Rev 87:101907. https://doi.org/10.1016/j.arr.2023.101907

    Article  CAS  PubMed  Google Scholar 

  95. Li X, Zhang Y, Li B, Yang H, Cui J, Li X, Zhang X, Sun H et al (2020) Activation of NLRP3 in microglia exacerbates diesel exhaust particles-induced impairment in learning and memory in mice. Environ Int 136:105487. https://doi.org/10.1016/j.envint.2020.105487

    Article  CAS  PubMed  Google Scholar 

  96. Maturana CJ, Aguirre A, Sáez JC (2017) High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring. Dev Neurobiol 77(5):625–642. https://doi.org/10.1002/dneu.22409

    Article  CAS  PubMed  Google Scholar 

  97. Pérez-Arizti JA, Ventura-Gallegos JL, Galván Juárez RE, Ramos-Godinez MDP, Colín-Val Z, López-Marure R (2020) Titanium dioxide nanoparticles promote oxidative stress, autophagy and reduce NLRP3 in primary rat astrocytes. Chem Biol Interact 317:108966. https://doi.org/10.1016/j.cbi.2020.108966

    Article  CAS  PubMed  Google Scholar 

  98. Gong Z, Pan J, Shen Q, Li M, Peng Y (2018) Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 15(1):242. https://doi.org/10.1186/s12974-018-1282-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jia X, Qiu T, Yao X, Jiang L, Wang N, Wei S, Tao Y, Pei P et al (2020) Arsenic induces hepatic insulin resistance via mtROS-NLRP3 inflammasome pathway. J Hazard Mater 399:123034. https://doi.org/10.1016/j.jhazmat.2020.123034

    Article  CAS  PubMed  Google Scholar 

  100. Pereira CA, Carlos D, Ferreira NS, Silva JF, Zanotto CZ, Zamboni DS, Garcia VD, Ventura DF et al (2019) Mitochondrial DNA promotes NLRP3 inflammasome activation and contributes to endothelial dysfunction and inflammation in type 1 diabetes. Front Physiol 10:1557. https://doi.org/10.3389/fphys.2019.01557

    Article  PubMed  Google Scholar 

  101. Trachalaki A, Tsitoura E, Mastrodimou S, Invernizzi R, Vasarmidi E, Bibaki E, Tzanakis N, Molyneaux PL et al (2021) Enhanced IL-1β release following NLRP3 and AIM2 inflammasome stimulation is linked to mtROS in airway macrophages in pulmonary fibrosis. Front Immunol 12:661811. https://doi.org/10.3389/fimmu.2021.661811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36(3):401–414. https://doi.org/10.1016/j.immuni.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luo Z-L, Sun H-Y, Wu X-B, Cheng L, Ren J-D (2021) Epigallocatechin-3-gallate attenuates acute pancreatitis induced lung injury by targeting mitochondrial reactive oxygen species triggered NLRP3 inflammasome activation. Food Funct 12(12):5658–5667. https://doi.org/10.1039/d1fo01154e

    Article  CAS  PubMed  Google Scholar 

  104. Kim S-M, Kim YG, Kim D-J, Park SH, Jeong K-H, Lee YH, Lim SJ, Lee S-H et al (2018) Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury. Front Immunol 9:2563. https://doi.org/10.3389/fimmu.2018.02563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gong W, Mao S, Yu J, Song J, Jia Z, Huang S, Zhang A (2016) NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am J Physiol Renal Physiol 310(10):F1081–F1088. https://doi.org/10.1152/ajprenal.00534.2015

    Article  CAS  PubMed  Google Scholar 

  106. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang R-R et al (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9(9):1321–1333. https://doi.org/10.4161/auto.25132

    Article  CAS  PubMed  Google Scholar 

  107. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D et al (2016) NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164(5):896–910. https://doi.org/10.1016/j.cell.2015.12.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nakahira K, Haspel JA, Rathinam VAK, Lee S-J, Dolinay T, Lam HC, Englert JA, Rabinovitch M et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230. https://doi.org/10.1038/ni.1980

    Article  CAS  PubMed  Google Scholar 

  109. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273. https://doi.org/10.1016/j.neuron.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. He Q, Li Z, Meng C, Wu J, Zhao Y, Zhao J (2019) Parkin-dependent mitophagy is required for the inhibition of ATF4 on NLRP3 inflammasome activation in cerebral ischemia-reperfusion injury in rats. Cells 8(8). https://doi.org/10.3390/cells8080897

  112. Prentice H, Modi JP, Wu J-Y (2015) Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxidative Med Cell Longev 2015:964518. https://doi.org/10.1155/2015/964518

    Article  CAS  Google Scholar 

  113. Vosler PS, Graham SH, Wechsler LR, Chen J (2009) Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics. Stroke 40(9):3149–3155. https://doi.org/10.1161/STROKEAHA.108.543769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang J-L, Mukda S, Chen S-D (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275. https://doi.org/10.1016/j.redox.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Park JH, Nakamura Y, Li W, Hamanaka G, Arai K, Lo EH, Hayakawa K (2021) Effects of O-GlcNAcylation on functional mitochondrial transfer from astrocytes. J Cereb Blood Flow Metab 41(7):1523–1535. https://doi.org/10.1177/0271678X20969588

    Article  CAS  PubMed  Google Scholar 

  117. Yang X, Qian K (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18(7):452–465. https://doi.org/10.1038/nrm.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao L, Feng Z, Yang X, Liu J (2016) The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome. Free Radic Res 50(10):1080–1088. https://doi.org/10.1080/10715762.2016.1239017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari BK et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33(9). https://doi.org/10.1002/embj.201386030

  120. Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M (2017) Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int 2017:7610414. https://doi.org/10.1155/2017/7610414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Caicedo A, Fritz V, Brondello J-M, Ayala M, Dennemont I, Abdellaoui N, de Fraipont F, Moisan A et al (2015) MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 5:9073. https://doi.org/10.1038/srep09073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765. https://doi.org/10.1038/nm.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 96(10):1039–1041. https://doi.org/10.1161/01.RES.0000168650.23479.0c

    Article  CAS  PubMed  Google Scholar 

  124. Sinha P, Islam MN, Bhattacharya S, Bhattacharya J (2016) Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Curr Opin Genet Dev 38. https://doi.org/10.1016/j.gde.2016.05.002

  125. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107. https://doi.org/10.3389/fcell.2016.00107

    Article  PubMed  PubMed Central  Google Scholar 

  126. Oeding SJ, Majstrowicz K, Hu X-P, Schwarz V, Freitag A, Honnert U, Nikolaus P, Bähler M (2018) Identification of Miro1 and Miro2 as mitochondrial receptors for myosin XIX. J Cell Sci 131(17). https://doi.org/10.1242/jcs.219469

  127. Stephen T-L, Higgs NF, Sheehan DF, Al Awabdh S, López-Doménech G, Arancibia-Carcamo IL, Kittler JT (2015) Miro1 regulates activity-driven positioning of mitochondria within astrocytic processes apposed to synapses to regulate intracellular calcium signaling. J Neurosci 35(48):15996–16011. https://doi.org/10.1523/JNEUROSCI.2068-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kalinski AL, Kar AN, Craver J, Tosolini AP, Sleigh JN, Lee SJ, Hawthorne A, Brito-Vargas P et al (2019) Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol 218(6):1871–1890. https://doi.org/10.1083/jcb.201702187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. English K, Shepherd A, Uzor NE, Trinh R, Kavelaars A, Heijnen CJ (2020) Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun 8(1):36. https://doi.org/10.1186/s40478-020-00897-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yao Y, Fan X-L, Jiang D, Zhang Y, Li X, Xu Z-B, Fang S-B, Chiu S et al (2018) Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem cell reports 11(5):1120–1135. https://doi.org/10.1016/j.stemcr.2018.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Basheer WA, Xiao S, Epifantseva I, Fu Y, Kleber AG, Hong T, Shaw RM (2017) GJA1-20k arranges actin to guide Cx43 delivery to cardiac intercalated discs. Circ Res 121(9):1069–1080. https://doi.org/10.1161/CIRCRESAHA.117.311955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ren D, Zheng P, Zou S, Gong Y, Wang Y, Duan J, Deng J, Chen H et al (2021) GJA1-20K enhances mitochondria transfer from astrocytes to neurons via Cx43-TnTs after traumatic brain injury. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01070-x

  133. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261. https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hu L, Bi C, Lin T, Liu L, Song Y, Wang P, Wang B, Fang C et al (2022) Association between plasma copper levels and first stroke: a community-based nested case-control study. Nutr Neurosci 25(7):1524–1533. https://doi.org/10.1080/1028415X.2021.1875299

    Article  CAS  PubMed  Google Scholar 

  135. Zhang J, Cao J, Zhang H, Jiang C, Lin T, Zhou Z, Song Y, Li Y et al (2019) Plasma copper and the risk of first stroke in hypertensive patients: a nested case-control study. Am J Clin Nutr 110(1):212–220. https://doi.org/10.1093/ajcn/nqz099

    Article  PubMed  Google Scholar 

  136. Zhang M, Li W, Wang Y, Wang T, Ma M, Tian C (2019) Association between the change of serum copper and ischemic stroke: a systematic review and meta-analysis. J Mol Neurosci 70(3):475–480. https://doi.org/10.1007/s12031-019-01441-6

    Article  CAS  PubMed  Google Scholar 

  137. Scheiber IF, Mercer JF, Dringen R (2010) Copper accumulation by cultured astrocytes. Neurochem Int 56(3):451–460. https://doi.org/10.1016/j.neuint.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  138. Scheiber IF, Schmidt MM, Dringen R (2010) Zinc prevents the copper-induced damage of cultured astrocytes. Neurochem Int 57(3):314–322. https://doi.org/10.1016/j.neuint.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  139. Scheiber IF, Schmidt MM, Dringen R (2012) Copper export from cultured astrocytes. Neurochem Int 60(3):292–300. https://doi.org/10.1016/j.neuint.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  140. Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62(5):556–565. https://doi.org/10.1016/j.neuint.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  141. Arnesano F, Balatri E, Banci L, Bertini I, Winge DR (2005) Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding. Structure 13(5):713–722. https://doi.org/10.1016/j.str.2005.02.015

    Article  CAS  PubMed  Google Scholar 

  142. Chojnacka M, Gornicka A, Oeljeklaus S, Warscheid B, Chacinska A (2015) Cox17 protein is an auxiliary factor involved in the control of the mitochondrial contact site and cristae organizing system. J Biol Chem 290(24):15304–15312. https://doi.org/10.1074/jbc.M115.645069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maxfield AB, Heaton DN, Winge DR (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem 279(7):5072–5080. https://doi.org/10.1074/jbc.M311772200

    Article  CAS  PubMed  Google Scholar 

  144. Colombo E, Triolo D, Bassani C, Bedogni F, Di Dario M, Dina G, Fredrickx E, Fermo I et al (2021) Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc Natl Acad Sci U S A 118(27). https://doi.org/10.1073/pnas.2025804118

  145. Mukda S, Tsai C-Y, Leu S, Yang J-L, Chan SHH (2019) Pinin protects astrocytes from cell death after acute ischemic stroke via maintenance of mitochondrial anti-apoptotic and bioenergetics functions. J Biomed Sci 26(1). https://doi.org/10.1186/s12929-019-0538-5

  146. Ge S, Zhang L, Cui X, Li Y (2022) Protective effects of brain-targeted dexmedetomidine nanomicelles on mitochondrial dysfunction in astrocytes of cerebral ischemia/reperfusion injury rats. Neuroscience 498:203–213. https://doi.org/10.1016/j.neuroscience.2022.07.005

    Article  CAS  PubMed  Google Scholar 

  147. Cao J, Dong L, Luo J, Zeng F, Hong Z, Liu Y, Zhao Y, Xia Z et al (2021) Supplemental N-3 polyunsaturated fatty acids limit A1-specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice. Oxidative Med Cell Longev 2021:5524705. https://doi.org/10.1155/2021/5524705

    Article  CAS  Google Scholar 

  148. Liu W, Su C, Qi Y, Liang J, Zhao L, Shi Y (2022) Brain-targeted heptapeptide-loaded exosomes attenuated ischemia-reperfusion injury by promoting the transfer of healthy mitochondria from astrocytes to neurons. J Nanobiotechnology 20(1):242. https://doi.org/10.1186/s12951-022-01425-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ni XC, Wang HF, Cai YY, Yang D, Alolga RN, Liu B, Li J, Huang FQ (2022) Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol 54:102363. https://doi.org/10.1016/j.redox.2022.102363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Emani SM, Piekarski BL, Harrild D, del Nido PJ, McCully JD (2017) Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154(1):286–289. https://doi.org/10.1016/j.jtcvs.2017.02.018

    Article  PubMed  Google Scholar 

  151. Guariento A, Piekarski BL, Doulamis IP, Blitzer D, Ferraro AM, Harrild DM, Zurakowski D, del Nido PJ et al (2021) Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg 162(3):992–1001. https://doi.org/10.1016/j.jtcvs.2020.10.151

    Article  PubMed  Google Scholar 

  152. Huang P-J, Kuo C-C, Lee H-C, Shen C-I, Cheng F-C, Wu S-F, Chang J-C, Pan H-C et al (2016) Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant 25(5):913–927. https://doi.org/10.3727/096368915x689785

    Article  CAS  PubMed  Google Scholar 

  153. Pourmohammadi-Bejarpasi Z, Roushandeh AM, Saberi A, Rostami MK, Toosi SMR, Jahanian-Najafabadi A, Tomita K, Kuwahara Y et al (2020) Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 165:70–80. https://doi.org/10.1016/j.brainresbull.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  154. Zhang Z, Ma Z, Yan C, Pu K, Wu M, Bai J, Li Y, Wang Q (2019) Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav Brain Res 356:322–331. https://doi.org/10.1016/j.bbr.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  155. Nakamura Y, Lo EH, Hayakawa K (2020) Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. Stroke 51(10):3142–3146. https://doi.org/10.1161/strokeaha.120.030152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81971228) and the Natural Science Foundation of Hebei Province (Nos. H2021206160 and H2022206579).

Author information

Authors and Affiliations

Authors

Contributions

L-YZ wrote the manuscript; X-YL, X-YW, and S-CL collected literatures; Y-YH drew the figure; Y-YH, J-GZ, X-HX, and W-BL reviewed and revised the manuscript; MZ designed and revised the manuscript.

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Ethical Approval

This is a review article. No ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LY., Hu, YY., Liu, XY. et al. The Role of Astrocytic Mitochondria in the Pathogenesis of Brain Ischemia. Mol Neurobiol 61, 2270–2282 (2024). https://doi.org/10.1007/s12035-023-03714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03714-z

Keywords

Navigation