Skip to main content
Log in

Neutrophil Extracellular Traps Exacerbate Ischemic Brain Damage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Most acute strokes are ischemic, and subsequent neuroinflammation promotes further damage leading to cell death but also plays a beneficial role by promoting cellular repair. Neutrophils are forerunners to brain lesions after ischemic stroke and exert elaborate functions. While neutrophil extracellular traps (NETs) possess a fundamental antimicrobial function within the innate immune system under physiological circumstances, increasing evidence indicates that NETosis, the release process of NETs, occurs in the pathogenic process of stroke. In this review, we focus on the processes of NET formation and clearance, the temporal and spatial alterations of neutrophils and NETs after ischemic damage, and how NETs are involved in several stroke-related phenomena. Generally, NET formation and release processes depend on the generation of reactive oxygen species (ROS) and the activation of nuclear peptidylarginine deiminase-4 (PAD4). The acid–base environment, oxygen concentration, and iron ions around the infarct may also impact NET formation. DNase 1 has been identified as the primary degrader of NETs in serum, while reactive microglia are expected to inhibit the formation of NETs around ischemic lesions by phagocytosis of neutrophils. The neutrophils and NETs are present in the perivascular space ipsilateral to the infarct arising after ischemic damage, peaking between 1 and 3 days postischemia, but their location in the brain parenchyma remains controversial. After the ischemic injury, NETs are involved in the destruction of neurological function primarily by disrupting the blood–brain barrier and promoting thrombosis. The potential effects of NETs on various ischemic nerve cells need to be further investigated, especially in the chronic ischemic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, Barker-Collo S, Moran AE et al (2015) Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: the GBD 2013 study. Neuroepidemiology 45(3):161–176. https://doi.org/10.1159/000441085

    Article  Google Scholar 

  2. Zhang H, Sun X, Xie Y, Zan J, Tan W (2017) Isosteviol sodium protects against permanent cerebral ischemia injury in mice via inhibition of NF-κB-mediated inflammatory and apoptotic responses. J Stroke Cerebrovasc Dis 26(11):2603–2614. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.023

    Article  PubMed  Google Scholar 

  3. Ding D (2015) Endovascular mechanical thrombectomy for acute ischemic stroke: a new standard of care. J Stroke 17(2):123–6. https://doi.org/10.5853/jos.2015.17.2.123

    Article  PubMed  PubMed Central  Google Scholar 

  4. Manda-Handzlik A, Demkow U (2019) The brain entangled: the contribution of neutrophil extracellular traps to the diseases of the central nervous system. Cells 8(12):1477. https://doi.org/10.3390/cells8121477

    Article  PubMed Central  CAS  Google Scholar 

  5. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5(10):e1000639. https://doi.org/10.1371/journal.ppat.1000639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Barnado A, Crofford LJ, Oates JC (2016) At the bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 99(2):265–278. https://doi.org/10.1189/jlb.5BT0615-234R

    Article  PubMed  CAS  Google Scholar 

  7. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5(8):577–582. https://doi.org/10.1038/nrmicro1710

    Article  PubMed  CAS  Google Scholar 

  8. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691. https://doi.org/10.1083/jcb.201006052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Brinkmann V (2018) Neutrophil extracellular traps in the second decade. J Innate Immun 10(5–6):414–421. https://doi.org/10.1159/000489829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B et al (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21(8):880–886. https://doi.org/10.1038/nm.3913

    Article  PubMed  CAS  Google Scholar 

  11. Otxoa-de-Amezaga A, Gallizioli M, Pedragosa J, Justicia C, Miró-Mur F, Salas-Perdomo A, Díaz-Marugan L, Gunzer M et al (2019) Location of neutrophils in different compartments of the damaged mouse brain after severe ischemia/reperfusion. Stroke 50(6):1548–1557. https://doi.org/10.1161/strokeaha.118.023837

    Article  PubMed  CAS  Google Scholar 

  12. Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A et al (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129(2):239–257. https://doi.org/10.1007/s00401-014-1381-0

    Article  PubMed  CAS  Google Scholar 

  13. Bonaventura A, Vecchié A, Abbate A, Montecucco F (2020) Neutrophil extracellular traps and cardiovascular diseases: an update. Cells 9(1):231. https://doi.org/10.3390/cells9010231

    Article  PubMed Central  CAS  Google Scholar 

  14. Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H (2019) Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol 39(9):1724–1738. https://doi.org/10.1161/atvbaha.119.312463

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim SW, Lee JK (2020) Role of HMGB1 in the interplay between NETosis and thrombosis in ischemic stroke: a review. Cells 9(8):1794. https://doi.org/10.3390/cells9081794

    Article  PubMed Central  CAS  Google Scholar 

  16. Douda DN, Jackson R, Grasemann H, Palaniyar N (2011) Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J Immunol 187(4):1856–1865. https://doi.org/10.4049/jimmunol.1004201

    Article  PubMed  CAS  Google Scholar 

  17. Guimarães-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, Conceição-Silva F, Saraiva EM (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106(16):6748–6753. https://doi.org/10.1073/pnas.0900226106

    Article  PubMed  PubMed Central  Google Scholar 

  18. Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J, Barthwal MK, Dikshit M (2012) Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS ONE 7(10):e48111. https://doi.org/10.1371/journal.pone.0048111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ (2010) Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 584(14):3193–3197. https://doi.org/10.1016/j.febslet.2010.06.006

    Article  PubMed  CAS  Google Scholar 

  20. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S et al (2013) NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5(178):178ra40. https://doi.org/10.1126/scitranslmed.3005580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Martinelli S, Urosevic M, Daryadel A, Oberholzer PA, Baumann C, Fey MF, Dummer R, Simon HU et al (2004) Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem 279(42):44123–44132. https://doi.org/10.1074/jbc.M405883200

    Article  PubMed  CAS  Google Scholar 

  22. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469. https://doi.org/10.1038/nm1565

    Article  PubMed  CAS  Google Scholar 

  23. Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K (2011) Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun 413(1):75–79. https://doi.org/10.1016/j.bbrc.2011.08.052

    Article  PubMed  CAS  Google Scholar 

  24. Kim SW, Davaanyam D, Seol SI, Lee HK, Lee H, Lee JK (2020) Adenosine triphosphate accumulated following cerebral ischemia induces neutrophil extracellular trap formation. Int J Mol Sci 21(20):7668. https://doi.org/10.3390/ijms21207668

    Article  PubMed Central  CAS  Google Scholar 

  25. von Köckritz-Blickwede M, Nizet V (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl) 87(8):775–783. https://doi.org/10.1007/s00109-009-0481-0

    Article  CAS  Google Scholar 

  26. Thiam HR, Wong SL, Wagner DD, Waterman CM (2020) Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol 36:191–218. https://doi.org/10.1146/annurev-cellbio-020520-111016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. https://doi.org/10.1083/jcb.200606027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N et al (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179(1):199–210. https://doi.org/10.1016/j.ajpath.2011.03.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang Y, Du F, Hawez A, Mörgelin M, Thorlacius H (2019) Neutrophil extracellular trap-microparticle complexes trigger neutrophil recruitment via high-mobility group protein 1 (HMGB1)-toll-like receptors(TLR2)/TLR4 signalling. Br J Pharmacol 176(17):3350–3363. https://doi.org/10.1111/bph.14765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Vogelgesang A, Lange C, Blümke L, Laage G, Rümpel S, Langner S, Bröker BM, Dressel A et al (2017) Ischaemic stroke and the recanalization drug tissue plasminogen activator interfere with antibacterial phagocyte function. J Neuroinflammation 14(1):140. https://doi.org/10.1186/s12974-017-0914-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA et al (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 22(2):146–153. https://doi.org/10.1038/nm.4027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, Baisch J, Phelps K et al (2016) Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med 213(5):697–713. https://doi.org/10.1084/jem.20151876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M (2012) The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediators Inflamm 2012:849136. https://doi.org/10.1155/2012/849136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V (2014) A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 8(3):883–896. https://doi.org/10.1016/j.celrep.2014.06.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD (2015) The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules 5(2):702–23. https://doi.org/10.3390/biom5020702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yang L, Liu Q (2020) DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583(7814):133–138. https://doi.org/10.1038/s41586-020-2394-6

    Article  PubMed  CAS  Google Scholar 

  38. Bylund J, Brown KL, Movitz C, Dahlgren C, Karlsson A (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic Biol Med 49(12):1834–1845. https://doi.org/10.1016/j.freeradbiomed.2010.09.016

    Article  PubMed  CAS  Google Scholar 

  39. El Benna J, Faust RP, Johnson JL, Babior BM (1996) Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem 271(11):6374–8. https://doi.org/10.1074/jbc.271.11.6374

    Article  PubMed  Google Scholar 

  40. Dekker LV, Leitges M, Altschuler G, Mistry N, McDermott A, Roes J, Segal AW (2000) Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochem J 347 Pt 1(Pt 1):285–9

    Article  CAS  Google Scholar 

  41. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H (2011) Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 7(2):75–77. https://doi.org/10.1038/nchembio.496

    Article  PubMed  CAS  Google Scholar 

  42. Kirchner T, Hermann E, Möller S, Klinger M, Solbach W, Laskay T, Behnen M (2013) Flavonoids and 5-aminosalicylic acid inhibit the formation of neutrophil extracellular traps. Mediators Inflamm 2013:710239. https://doi.org/10.1155/2013/710239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD, Bax BD, Bicker KL, Bingham RP et al (2015) Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 11(3):189–191. https://doi.org/10.1038/nchembio.1735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kearney PL, Bhatia M, Jones NG, Yuan L, Glascock MC, Catchings KL, Yamada M, Thompson PR (2005) Kinetic characterization of protein arginine deiminase 4: a transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry 44(31):10570–10582. https://doi.org/10.1021/bi050292m

    Article  PubMed  CAS  Google Scholar 

  45. Lai NS, Yu HC, Tung CH, Huang KY, Huang HB, Lu MC (2019) Increased peptidylarginine deiminases expression during the macrophage differentiation and participated inflammatory responses. Arthritis Res Ther 21(1):108. https://doi.org/10.1186/s13075-019-1896-9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213. https://doi.org/10.1083/jcb.200806072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, Goldman RD, Wagner DD et al (2020) NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A 117(13):7326–7337. https://doi.org/10.1073/pnas.1909546117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sun B, Dwivedi N, Bechtel TJ, Paulsen JL, Muth A, Bawadekar M, Li G, Thompson PR et al (2017) Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1β and TNFα. Sci Immunol 2(12):eaal3062. https://doi.org/10.1126/sciimmunol.aal3062

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jang B, Kim HW, Kim JS, Kim WS, Lee BR, Kim S, Kim H, Han SJ et al (2015) Peptidylarginine deiminase inhibition impairs Toll-like receptor agonist-induced functional maturation of dendritic cells, resulting in the loss of T cell-proliferative capacity: a partial mechanism with therapeutic potential in inflammatory settings. J Leukoc Biol 97(2):351–362. https://doi.org/10.1189/jlb.3A0314-142RR

    Article  PubMed  CAS  Google Scholar 

  50. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107(36):15880–15885. https://doi.org/10.1073/pnas.1005743107

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vaibhav K, Braun M, Alverson K, Khodadadi H, Kutiyanawalla A, Ward A, Banerjee C, Sparks T et al (2020) Neutrophil extracellular traps exacerbate neurological deficits after traumatic brain injury. Sci Adv 6(22):eaax8847. https://doi.org/10.1126/sciadv.aax8847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kang L, Yu H (2020) Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 11(1):2488. https://doi.org/10.1038/s41467-020-16191-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kim SW, Lee H, Lee HK, Kim ID, Lee JK (2019) Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun 7(1):94. https://doi.org/10.1186/s40478-019-0747-x

    Article  PubMed  CAS  Google Scholar 

  54. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, Hu J, Wang Y et al (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 110(21):8674–8679. https://doi.org/10.1073/pnas.1301059110

    Article  PubMed  PubMed Central  Google Scholar 

  55. Neeli I, Khan SN, Radic M (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 180(3):1895–1902. https://doi.org/10.4049/jimmunol.180.3.1895

    Article  PubMed  CAS  Google Scholar 

  56. Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H, Pittet JF, Tracey K et al (2013) HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 304(5):L342–L349. https://doi.org/10.1152/ajplung.00151.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. McInturff AM, Cody MJ, Elliott EA, Glenn JW, Rowley JW, Rondina MT, Yost CC (2012) Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 α. Blood 120(15):3118–3125. https://doi.org/10.1182/blood-2012-01-405993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Branitzki-Heinemann K, Möllerherm H, Völlger L, Husein DM, de Buhr N, Blodkamp S, Reuner F, Brogden G et al (2016) Formation of neutrophil extracellular traps under low oxygen level. Front Immunol 7:518. https://doi.org/10.3389/fimmu.2016.00518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Völlger L, Akong-Moore K, Cox L, Goldmann O, Wang Y, Schäfer ST, Naim HY, Nizet V et al (2016) Iron-chelating agent desferrioxamine stimulates formation of neutrophil extracellular traps (NETs) in human blood-derived neutrophils. Biosci Rep 36(3):e00333. https://doi.org/10.1042/bsr20160031

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 21(7):815–819. https://doi.org/10.1038/nm.3887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Deng J, Zhao F, Zhang Y, Zhou Y, Xu X, Zhang X, Zhao Y (2020) Neutrophil extracellular traps increased by hyperglycemia exacerbate ischemic brain damage. Neurosci Lett 738:135383. https://doi.org/10.1016/j.neulet.2020.135383

    Article  PubMed  CAS  Google Scholar 

  62. Maueröder C, Mahajan A, Paulus S, Gößwein S, Hahn J, Kienhöfer D, Biermann MH, Tripal P et al (2016) Ménage-à-Trois: the ratio of bicarbonate to CO(2) and the pH Regulate the capacity of neutrophils to form NETs. Front Immunol 7:583. https://doi.org/10.3389/fimmu.2016.00583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Behnen M, Möller S, Brozek A, Klinger M, Laskay T (2017) Extracellular acidification inhibits the ROS-dependent formation of neutrophil extracellular traps. Front Immunol 8:184. https://doi.org/10.3389/fimmu.2017.00184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107(21):9813–9818. https://doi.org/10.1073/pnas.0909927107

    Article  PubMed  PubMed Central  Google Scholar 

  65. Farrera C, Fadeel B (2013) Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191(5):2647–2656. https://doi.org/10.4049/jimmunol.1300436

    Article  PubMed  CAS  Google Scholar 

  66. Jiménez-Alcázar M, Rangaswamy C (2017) Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358(6367):1202–1206. https://doi.org/10.1126/science.aam8897

    Article  PubMed  CAS  Google Scholar 

  67. Heuer A, Stiel C, Elrod J, Königs I, Vincent D, Schlegel P, Trochimiuk M, Appl B et al (2021) Therapeutic targeting of neutrophil extracellular traps improves primary and secondary intention wound healing in mice. Front Immunol 12:614347. https://doi.org/10.3389/fimmu.2021.614347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Scozzi D, Wang X, Liao F, Liu Z, Zhu J, Pugh K, Ibrahim M, Hsiao HM et al (2019) Neutrophil extracellular trap fragments stimulate innate immune responses that prevent lung transplant tolerance. Am J Transplant 19(4):1011–1023. https://doi.org/10.1111/ajt.15163

    Article  PubMed  CAS  Google Scholar 

  69. Sharma S, Hofbauer TM, Ondracek AS, Chausheva S, Alimohammadi A, Artner T, Panzenboeck A, Rinderer J et al (2021) Neutrophil extracellular traps promote fibrous vascular occlusions in chronic thrombosis. Blood 137(8):1104–1116. https://doi.org/10.1182/blood.2020005861

    Article  PubMed  CAS  Google Scholar 

  70. Peer V, Abu Hamad R, Berman S, Efrati S (2016) Renoprotective effects of DNAse-I treatment in a rat model of ischemia/reperfusion-induced acute kidney injury. Am J Nephrol 43(3):195–205. https://doi.org/10.1159/000445546

    Article  PubMed  CAS  Google Scholar 

  71. De Meyer SF, Suidan GL, Fuchs TA, Monestier M, Wagner DD (2012) Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol 32(8):1884–1891. https://doi.org/10.1161/atvbaha.112.250993

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ge L, Zhou X, Ji WJ, Lu RY, Zhang Y, Zhang YD, Ma YQ, Zhao JH et al (2015) Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol 308(5):H500-9. https://doi.org/10.1152/ajpheart.00381.2014

    Article  PubMed  CAS  Google Scholar 

  73. Wang S, Xie T, Sun S, Wang K, Liu B, Wu X, Ding W (2018) DNase-1 treatment exerts protective effects in a rat model of intestinal ischemia-reperfusion injury. Sci Rep 8(1):17788. https://doi.org/10.1038/s41598-018-36198-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Martínez Valle F, Balada E, Ordi-Ros J, Vilardell-Tarres M (2008) DNase 1 and systemic lupus erythematosus. Autoimmun Rev 7(5):359–363. https://doi.org/10.1016/j.autrev.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  75. Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, Migliorini P, Bertelli R et al (2020) Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol 47(3):377–386. https://doi.org/10.3899/jrheum.181232

    Article  PubMed  CAS  Google Scholar 

  76. Neumann J, Sauerzweig S, Rönicke R, Gunzer F, Dinkel K, Ullrich O, Gunzer M, Reymann KG (2008) Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 28(23):5965–5975. https://doi.org/10.1523/jneurosci.0060-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Otxoa-de-Amezaga A, Miró-Mur F, Pedragosa J, Gallizioli M, Justicia C, Gaja-Capdevila N, Ruíz-Jaen F, Salas-Perdomo A et al (2019) Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathol 137(2):321–341. https://doi.org/10.1007/s00401-018-1954-4

    Article  PubMed  CAS  Google Scholar 

  78. Levard D, Buendia I, Lanquetin A, Glavan M, Vivien D, Rubio M (2021) Filling the gaps on stroke research: focus on inflammation and immunity. Brain Behav Immun 91:649–667. https://doi.org/10.1016/j.bbi.2020.09.025

    Article  PubMed  CAS  Google Scholar 

  79. Herisson F, Frodermann V (2018) Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci 21(9):1209–1217. https://doi.org/10.1038/s41593-018-0213-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, Prinz V, Dirnagl U et al (2013) The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol 125(3):395–412. https://doi.org/10.1007/s00401-012-1076-3

    Article  PubMed  Google Scholar 

  81. Connolly ES Jr, Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, Stern DM, Solomon RA et al (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97(1):209–16. https://doi.org/10.1172/jci118392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Cai W, Liu S, Hu M, Huang F, Zhu Q, Qiu W, Hu X, Colello J et al (2020) Functional dynamics of neutrophils after ischemic stroke. Transl Stroke Res 11(1):108–121. https://doi.org/10.1007/s12975-019-00694-y

    Article  PubMed  Google Scholar 

  83. Andersson PB, Perry VH, Gordon S (1992) Intracerebral injection of proinflammatory cytokines or leukocyte chemotaxins induces minimal myelomonocytic cell recruitment to the parenchyma of the central nervous system. J Exp Med 176(1):255–259. https://doi.org/10.1084/jem.176.1.255

    Article  PubMed  CAS  Google Scholar 

  84. Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, König R, Hütten H, Etemire E, Männ L et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277. https://doi.org/10.1007/s00401-014-1355-2

    Article  PubMed  CAS  Google Scholar 

  85. Neumann J, Henneberg S, von Kenne S, Nolte N, Müller AJ, Schraven B, Görtler MW, Reymann KG et al (2018) Beware the intruder: real time observation of infiltrated neutrophils and neutrophil-microglia interaction during stroke in vivo. PLoS One 13(3):e0193970. https://doi.org/10.1371/journal.pone.0193970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kalimo H, del Zoppo GJ, Paetau A, Lindsberg PJ (2013) Polymorphonuclear neutrophil infiltration into ischemic infarctions: myth or truth? Acta Neuropathol 125(3):313–316. https://doi.org/10.1007/s00401-013-1098-5

    Article  PubMed  Google Scholar 

  87. Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 34(3):450–459. https://doi.org/10.1038/jcbfm.2013.217

    Article  PubMed  CAS  Google Scholar 

  88. Stowe AM, Adair-Kirk TL, Gonzales ER, Perez RS, Shah AR, Park TS, Gidday JM (2009) Neutrophil elastase and neurovascular injury following focal stroke and reperfusion. Neurobiol Dis 35(1):82–90. https://doi.org/10.1016/j.nbd.2009.04.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lindsberg PJ, Carpén O, Paetau A, Karjalainen-Lindsberg ML, Kaste M (1996) Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 94(5):939–945. https://doi.org/10.1161/01.cir.94.5.939

    Article  PubMed  CAS  Google Scholar 

  90. Price CJ, Menon DK, Peters AM, Ballinger JR, Barber RW, Balan KK, Lynch A, Xuereb JH et al (2004) Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke 35(7):1659–1664. https://doi.org/10.1161/01.str.0000130592.71028.92

    Article  PubMed  CAS  Google Scholar 

  91. Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O, Lassmann H (2018) Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol 28(6):791–805. https://doi.org/10.1111/bpa.12583

    Article  PubMed  CAS  Google Scholar 

  92. Weston RM, Jones NM, Jarrott B, Callaway JK (2007) Inflammatory cell infiltration after endothelin-1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal changes in brain injury. J Cereb Blood Flow Metab 27(1):100–114. https://doi.org/10.1038/sj.jcbfm.9600324

    Article  PubMed  CAS  Google Scholar 

  93. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31(8):318–324. https://doi.org/10.1016/j.it.2010.05.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang J, Hossain M (2017) Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358(6359):111–116. https://doi.org/10.1126/science.aam9690

    Article  PubMed  CAS  Google Scholar 

  95. Ruhnau J, Schulze K, Gaida B, Langner S, Kessler C, Bröker B, Dressel A, Vogelgesang A (2014) Stroke alters respiratory burst in neutrophils and monocytes. Stroke 45(3):794–800. https://doi.org/10.1161/strokeaha.113.003342

    Article  PubMed  Google Scholar 

  96. Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ (2016) Inflammatory disequilibrium in stroke. Circ Res 119(1):142–158. https://doi.org/10.1161/circresaha.116.308022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, Li Y, Chen X et al (2014) Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 32(12):3150–3162. https://doi.org/10.1002/stem.1808

    Article  PubMed  CAS  Google Scholar 

  98. Heck LW, Blackburn WD, Irwin MH, Abrahamson DR (1990) Degradation of basement membrane laminin by human neutrophil elastase and cathepsin G. Am J Pathol 136(6):1267–1274

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Rodrigues SF, Granger DN (2015) Blood cells and endothelial barrier function. Tissue Barriers 3(1–2):e978720. https://doi.org/10.4161/21688370.2014.978720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 7(2):e32366. https://doi.org/10.1371/journal.pone.0032366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Meegan JE, Yang X, Beard RS Jr, Jannaway M, Chatterjee V, Taylor-Clark TE, Yuan SY (2018) Citrullinated histone 3 causes endothelial barrier dysfunction. Biochem Biophys Res Commun 503(3):1498–1502. https://doi.org/10.1016/j.bbrc.2018.07.069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR (2015) Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 35(6):888–901. https://doi.org/10.1038/jcbfm.2015.45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56. https://doi.org/10.3389/fncel.2016.00056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Boeltz S, Muñoz LE, Fuchs TA, Herrmann M (2017) Neutrophil extracellular traps open the Pandora’s box in severe malaria. Front Immunol 8:874. https://doi.org/10.3389/fimmu.2017.00874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Finsterbusch M, Voisin MB, Beyrau M, Williams TJ, Nourshargh S (2014) Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J Exp Med 211(7):1307–1314. https://doi.org/10.1084/jem.20132413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Fuchs TA, Brill A, Wagner DD (2012) Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 32(8):1777–1783. https://doi.org/10.1161/atvbaha.111.242859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A et al (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209(4):819–835. https://doi.org/10.1084/jem.20112322

    Article  CAS  Google Scholar 

  108. de Bont CM, Boelens WC, Pruijn GJM (2019) NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 16(1):19–27. https://doi.org/10.1038/s41423-018-0024-0

    Article  PubMed  CAS  Google Scholar 

  109. Longstaff C, Varjú I, Sótonyi P, Szabó L, Krumrey M, Hoell A, Bóta A, Varga Z et al (2013) Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem 288(10):6946–6956. https://doi.org/10.1074/jbc.M112.404301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rainer TH, Wong LK, Lam W, Yuen E, Lam NY, Metreweli C, Lo YM (2003) Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 49(4):562–569. https://doi.org/10.1373/49.4.562

    Article  PubMed  CAS  Google Scholar 

  111. Tsai NW, Lin TK, Chen SD, Chang WN, Wang HC, Yang TM, Lin YJ, Jan CR et al (2011) The value of serial plasma nuclear and mitochondrial DNA levels in patients with acute ischemic stroke. Clin Chim Acta 412(5–6):476–479. https://doi.org/10.1016/j.cca.2010.11.036

    Article  PubMed  CAS  Google Scholar 

  112. Geiger S, Holdenrieder S, Stieber P, Hamann GF, Bruening R, Ma J, Nagel D, Seidel D (2006) Nucleosomes in serum of patients with early cerebral stroke. Cerebrovasc Dis 21(1–2):32–37. https://doi.org/10.1159/000089591

    Article  PubMed  Google Scholar 

  113. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT (2011) Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118(7):1952–1961. https://doi.org/10.1182/blood-2011-03-343061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kataoka H, Hamilton JR, McKemy DD, Camerer E, Zheng YW, Cheng A, Griffin C, Coughlin SR (2003) Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells. Blood 102(9):3224–3231. https://doi.org/10.1182/blood-2003-04-1130

    Article  PubMed  CAS  Google Scholar 

  115. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275(10):6819–6823. https://doi.org/10.1074/jbc.275.10.6819

    Article  PubMed  CAS  Google Scholar 

  116. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, Nácher M, Pitaval C et al (2014) Neutrophils scan for activated platelets to initiate inflammation. Science 346(6214):1234–1238. https://doi.org/10.1126/science.1256478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wang Y, Gao H, Shi C, Erhardt PW, Pavlovsky A, A Soloviev D, Bledzka K, Ustinov V et al (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun 8:15559. https://doi.org/10.1038/ncomms15559

  118. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12(3):324–333. https://doi.org/10.1016/j.chom.2012.06.011

    Article  PubMed  CAS  Google Scholar 

  119. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896. https://doi.org/10.1038/nm.2184

    Article  PubMed  CAS  Google Scholar 

  120. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A et al (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 12(12):2074–2088. https://doi.org/10.1111/jth.12710

    Article  PubMed  CAS  Google Scholar 

  121. Agbani EO, Poole AW (2017) Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 130(20):2171–2179. https://doi.org/10.1182/blood-2017-05-787259

    Article  PubMed  CAS  Google Scholar 

  122. Gould TJ, Lysov Z, Liaw PC (2015) Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost 13(Suppl 1):S82-91. https://doi.org/10.1111/jth.12977

    Article  PubMed  CAS  Google Scholar 

  123. Pfeiler S, Stark K, Massberg S, Engelmann B (2017) Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica 102(2):206–213. https://doi.org/10.3324/haematol.2016.142471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Oehmcke S, Mörgelin M, Herwald H (2009) Activation of the human contact system on neutrophil extracellular traps. J Innate Immun 1(3):225–230. https://doi.org/10.1159/000203700

    Article  PubMed  PubMed Central  Google Scholar 

  125. Healy LD, Puy C, Itakura A, Chu T, Robinson DK, Bylund A, Phillips KG, Gardiner EE et al (2016) Colocalization of neutrophils, extracellular DNA and coagulation factors during NETosis: development and utility of an immunofluorescence-based microscopy platform. J Immunol Methods 435:77–84. https://doi.org/10.1016/j.jim.2016.06.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kambas K, Mitroulis I, Apostolidou E, Girod A, Chrysanthopoulou A, Pneumatikos I, Skendros P, Kourtzelis I et al (2012) Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS ONE 7(9):e45427. https://doi.org/10.1371/journal.pone.0045427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT (2011) Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 9(9):1795–1803. https://doi.org/10.1111/j.1538-7836.2011.04422.x

    Article  PubMed  CAS  Google Scholar 

  128. Leinweber J, Mizurini DM, Francischetti IMB, Fleischer M, Hermann DM, Kleinschnitz C, Langhauser F (2021) Elastase inhibitor agaphelin protects from acute ischemic stroke in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Brain Behav Immun 93:288–298. https://doi.org/10.1016/j.bbi.2020.12.027

    Article  PubMed  CAS  Google Scholar 

  129. Martinod K, Wagner DD (2014) Thrombosis: tangled up in NETs. Blood 123(18):2768–2776. https://doi.org/10.1182/blood-2013-10-463646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Noubouossie DF, Whelihan MF, Yu YB, Sparkenbaugh E, Pawlinski R, Monroe DM, Key NS (2017) In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 129(8):1021–1029. https://doi.org/10.1182/blood-2016-06-722298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC et al (2015) 2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 46(10):3020–3035. https://doi.org/10.1161/str.0000000000000074

    Article  PubMed  CAS  Google Scholar 

  132. Seners P, Turc G, Maïer B, Mas JL, Oppenheim C, Baron JC (2016) Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke 47(9):2409–2412. https://doi.org/10.1161/strokeaha.116.014181

    Article  PubMed  CAS  Google Scholar 

  133. Tomkins AJ, Schleicher N, Murtha L, Kaps M, Levi CR, Nedelmann M, Spratt NJ (2015) Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. Exp Transl Stroke Med 7:2. https://doi.org/10.1186/s13231-014-0014-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Watson BD, Prado R, Veloso A, Brunschwig JP, Dietrich WD (2002) Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke. Stroke 33(2):428–434. https://doi.org/10.1161/hs0202.102730

    Article  PubMed  Google Scholar 

  135. Whiteley WN, Slot KB, Fernandes P, Sandercock P, Wardlaw J (2012) Risk factors for intracranial hemorrhage in acute ischemic stroke patients treated with recombinant tissue plasminogen activator: a systematic review and meta-analysis of 55 studies. Stroke 43(11):2904–2909. https://doi.org/10.1161/strokeaha.112.665331

    Article  PubMed  CAS  Google Scholar 

  136. Suzuki Y, Nagai N, Umemura K (2016) A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci 10:2. https://doi.org/10.3389/fncel.2016.00002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Pena-Martinez C, Duran-Laforet V, Garcia-Culebras A, Ostos F, Hernandez-Jimenez M, Bravo-Ferrer I, Perez-Ruiz A, Ballenilla F et al (2019) Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) Resistance. Stroke 50(11):3228–3237. https://doi.org/10.1161/STROKEAHA.119.026848

    Article  PubMed  CAS  Google Scholar 

  138. Laridan E, Denorme F, Desender L, François O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232. https://doi.org/10.1002/ana.24993

    Article  PubMed  CAS  Google Scholar 

  139. Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X et al (2021) Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138(1):91–103. https://doi.org/10.1182/blood.2020008913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ducroux C, Di Meglio L, Loyau S, Delbosc S, Boisseau W, Deschildre C, Ben Maacha M, Blanc R et al (2018) Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 49(3):754–757. https://doi.org/10.1161/strokeaha.117.019896

    Article  PubMed  Google Scholar 

  141. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 22(2):146–53. https://doi.org/10.1038/nm.4027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pietronigro EC, Della Bianca V, Zenaro E, Constantin G (2017) NETosis in Alzheimer’s disease. Front Immunol 8:211. https://doi.org/10.3389/fimmu.2017.00211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Allam R, Kumar SV, Darisipudi MN, Anders HJ (2014) Extracellular histones in tissue injury and inflammation. J Mol Med (Berl) 92(5):465–472. https://doi.org/10.1007/s00109-014-1148-z

    Article  CAS  Google Scholar 

  144. Gilthorpe JD, Oozeer F, Nash J, Calvo M, Bennett DL, Lumsden A, Pini A (2013) Extracellular histone H1 is neurotoxic and drives a pro-inflammatory response in microglia. F1000Res 2:148. https://doi.org/10.12688/f1000research.2-148.v1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A, Olsson AK (2015) Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res 75(13):2653–2662. https://doi.org/10.1158/0008-5472.can-14-3299

    Article  PubMed  CAS  Google Scholar 

  146. Meegan JE, Yang X, Coleman DC, Jannaway M, and Yuan SY (2017) Neutrophil-mediated vascular barrier injury: role of neutrophil extracellular traps. Microcirculation 24(3). https://doi.org/10.1111/micc.12352

Download references

Acknowledgements

We thank Dr Zhanzhuang Tian and Dr Jun Wang from Shanghai Medical College, Fudan University for their valuable comments and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China [grant number 82072540].

Author information

Authors and Affiliations

Authors

Contributions

Congqin Li and Yulong Bai had the initial idea for this article; Congqin Li prepared figures and drafted the manuscript; Ying Xing and Yuqian Zhang performed the literature search. All of the authors critically revised the manuscript. Yulong Bai approved the final version of the manuscript and provided the funds.

Corresponding author

Correspondence to Yulong Bai.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xing, Y., Zhang, Y. et al. Neutrophil Extracellular Traps Exacerbate Ischemic Brain Damage. Mol Neurobiol 59, 643–656 (2022). https://doi.org/10.1007/s12035-021-02635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02635-z

Keywords

Navigation