Skip to main content
Log in

Cloning of the Thermostable Cellulase Gene from Newly Isolated Bacillus subtilis and its Expression in Escherichia coli

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial strain with high cellulase activity (0.26 U/ml culture medium) was isolated from hot spring, and classified and named as B. subtilis DR by morphological and 16SrDNA gene sequence analysis. A thermostable endocellulase, CelDR, was purified from the isolated strain. The optimum temperature of the enzyme reaction was 50°C, and CelDR retained 70% of its maximum activity at 75°C after incubation for 30 min. The putative gene celDR, consisting an open reading frame (ORF) of 1,524 nucleotides and encoding a protein of 508 amino acids with a molecular weight of 55 kDa, was purified from B. subtilis DR and cloned into pET-28a for expression. The cellulase production in E. coli BL21 (DE3) was enhanced to approximately three times that of the wild-type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, R. L., Paul, J. W., Willem, H. V., Zyl, I., & Pretorius, S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577. doi:10.1128/MMBR.66.3.506-577.2002.

    Article  CAS  Google Scholar 

  2. Rizzatti, A. C. S., Jorge, J. A., Terenzi, H. F., Rechia, C. G. V., & Polizeli, M. L. T. M. (2001). Purification and properties of a thermostable extracellular β-d-xylosidase produced by a thermotolerant Aspergillus phoenicis. Journal of Industrial Microbiology & Biotechnology, 26, 156–160. doi:10.1038/sj.jim.7000107.

    Article  CAS  Google Scholar 

  3. Masohiro, N., Masahiro, G., Hirofumi, O., & Yasushi, M. (2001). l-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Current Genetics, 38, 329–334. doi:10.1007/s002940000165.

    Article  Google Scholar 

  4. Watanabe, H., & Tokuda, G. (2001). Animal cellulases, CMLS. Cellular and Molecular Life Sciences, 58, 1167–1178. doi:10.1007/PL00000931.

    Article  CAS  Google Scholar 

  5. Goedegebuur, F., Fowler, T., Phillips, J., Kley, P. V., Solingen, P. V., Dankmeyer, L., et al. (2002). Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Current Genetics, 41, 89–98. doi:10.1007/s00294-002-0290-2.

    Article  CAS  Google Scholar 

  6. Will, F., Bauckhage, K., & Dietrich, H. (2002). Apple pomace liquefaction with pectinases and cellulases: Analytical data of the corresponding juices. European Food Research and Technology, 211, 291–297. doi:10.1007/s002170000171.

    Article  Google Scholar 

  7. Hiroki, I., Tadanori, A., Keisuke, T., & Yutaka, K. (2005). Heterologous expression and characterization of the endocellulase encoding gene cel3A from the basidiomycete Polyporus arcularius. Mycoscience, 46, 154–161. doi:10.1007/s10267-005-0225-0.

    Article  CAS  Google Scholar 

  8. Johnson, E. A., Madia, A., & Demain, A. C. (1981). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Applied and Environmental Microbiology, 41, 1060–1062.

    CAS  Google Scholar 

  9. Bhat, M. K. (2000). Cellulase and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383. doi:10.1016/S0734-9750(00)00041-0.

    Article  CAS  Google Scholar 

  10. Doyle, J., Pavel, R., Barness, G., & Steinberger, Y. (2006). Cellulase dynamics in a desert soil. Soil Biology & Biochemistry, 38, 371–376.

    CAS  Google Scholar 

  11. Li, Y. H., Ding, M., Wang, J., Xu, G. J., & Zhao, F. (2006). A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Applied Microbiology and Biotechnology, 70, 430–436. doi:10.1007/s00253-005-0075-x.

    Article  CAS  Google Scholar 

  12. Herbert, R. A. (1992). A perspective on the biotechnological potential of extremophiles. Trends in Biotechnology, 10, 395–402. doi:10.1016/0167-7799(92)90282-Z.

    Article  CAS  Google Scholar 

  13. Paula, S. P., Alexandra, M., José, C. D., Maria, R., Aires, B., & Maria, C. F. (2002). Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enzyme and Microbial Technology, 30, 924–933. doi:10.1016/S0141-0229(02)00034-0.

    Article  Google Scholar 

  14. Showale, J. G., & Sadana, J. C. (1978). Cellulase and b-glucosidase production by Basidiomycetes species. Canadian Journal of Microbiology, 24, 1204–1216.

    Article  Google Scholar 

  15. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  16. Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterisation of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43, 777–780.

    CAS  Google Scholar 

  17. Crawford, D., & Mccoy, E. (1972). Cellulases of Thermomonospora fusca and Streptomyces thermodiastaticus. Applied Microbiology, 24, 150–152.

    CAS  Google Scholar 

  18. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  19. Kim, C. H., & Kim, D. S. (1992). Production and characterization of crystalline cellulose-degrading cellulase components from a thermophilic and moderately alkalophilic bacterium. Journal of Microbiology and Biotechnology, 2, 7–13.

    Google Scholar 

  20. Nazneen, B., & Javed, M. (2003). Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Current Microbiology, 46, 324–328. doi:10.1007/s00284-002-3857-8.

    Article  CAS  Google Scholar 

  21. Hollien, J., & Marqusee, S. (1999). Structural distribution of stability in a thermophilic enzyme. Proceedings of the National Academy of Sciences of the USA, 96, 13674–13678. doi:10.1073/pnas.96.24.13674.

    Article  CAS  Google Scholar 

  22. Te’o, V. S. J., Saul, D. J., & Bergquist, P. L. (1995). CelA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Applied Microbiology and Biotechnology, 43, 291–296. doi:10.1007/BF00172827.

    Article  CAS  Google Scholar 

  23. Yoshihiro, H., Kenzo, K., Tadashi, Y., Hajimi, M., Tohru, K., & Susumu, I. (1997). Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles, 1, 151–156. doi:10.1007/s007920050028.

    Article  Google Scholar 

  24. Robertson, L. D., & Koehn, R. D. (1978). Characteristics of the cellulase produced by the Ascomycete Poronia punctata. Mycologia, 70, 1113–1121. doi:10.2307/3759142.

    Article  CAS  Google Scholar 

  25. Zeikus, J. G., Vieille, C., & Savchenko, A. (1998). Thermozymes: Biotechnology and structure–function relationships. Extremophiles, 2, 179–183. doi:10.1007/s007920050058.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National New Productions Project from the Science and Technology Ministry (P. R. China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Ming Yang or Yu-Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhang, WW., Yang, MM. et al. Cloning of the Thermostable Cellulase Gene from Newly Isolated Bacillus subtilis and its Expression in Escherichia coli . Mol Biotechnol 40, 195–201 (2008). https://doi.org/10.1007/s12033-008-9079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9079-y

Keywords

Navigation