Skip to main content

Advertisement

Log in

Unlocking the ‘ova’-coming power: immunotherapy’s role in shaping the future of ovarian cancer treatment

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Ovarian cancer is a prominent cancer worldwide with a relatively low survival rate for women diagnosed. Many individuals are diagnosed in the late stage of the disease and are prescribed a wide variety of treatment options. Current treatment options are primarily a combination of surgery and chemotherapy as well as a new but promising treatment involving immunotherapy. Nevertheless, contemporary therapeutic modalities exhibit a discernible lag in advancement when compared with the strides achieved in recent years in the context of other malignancies. Moreover, many surgery and chemotherapy options have a high risk for recurrence due to the late-stage diagnosis. Therefore, there is a necessity to further treatment options. There have been many new advancements in the field of immunotherapy. Immunotherapy has been approved for 16 various types of cancers and has shown significant treatment potential in many other cancers as well. Researchers have also found many promising outlooks for immunotherapy as a treatment for ovarian cancer. This review summarizes many of the new advancements in immunotherapy treatment options and could potentially offer valuable insights to gynecologists aimed at enhancing the efficacy of their treatment approaches for patients diagnosed with ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int J Mol Sci. 2019;20(4):952. https://doi.org/10.3390/ijms20040952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lele S. Ovarian cancer. Brisbane City: Exon Publications; 2022.

    Book  Google Scholar 

  3. Guo X, Zhao G. Establishment and verification of logistic regression model for qualitative diagnosis of ovarian cancer based on MRI and ultrasound signs. Comput Math Methods Med. 2022;2022:7531371. https://doi.org/10.1155/2022/7531371.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Staicu CE, Predescu DV, Rusu CM, Radu BM, Cretoiu D, Suciu N, Crețoiu SM, Voinea SC. Role of microRNAs as clinical cancer biomarkers for ovarian cancer: a short overview. Cells. 2020;9(1):169. https://doi.org/10.3390/cells9010169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6. https://doi.org/10.1016/j.soncn.2019.02.001.

    Article  PubMed  Google Scholar 

  6. Friedrich M, Friedrich D, Kraft C, Rogmans C. Multimodal treatment of primary advanced ovarian cancer. Anticancer Res. 2021;41(7):3253–60. https://doi.org/10.21873/anticanres.15111.

    Article  CAS  PubMed  Google Scholar 

  7. Engbersen MP, Van Driel W, Lambregts D, Lahaye M. The role of CT, PET-CT, and MRI in ovarian cancer. Br J Radiol. 2021;94(1125):20210117. https://doi.org/10.1259/bjr.20210117.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pan C, Liu H, Robins E, Song W, Liu D, Li Z, Zheng L. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13(1):29. https://doi.org/10.1186/s13045-020-00862-w.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci. 2021;22(12):6532. https://doi.org/10.3390/ijms22126532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol: Off J Eur Soc Med Oncol. 2017. https://doi.org/10.1093/annonc/mdx444.

    Article  Google Scholar 

  11. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21. https://doi.org/10.1038/s41423-020-0488-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14. https://doi.org/10.1016/j.cell.2015.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42. https://doi.org/10.1038/nri3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2(2): e000213. https://doi.org/10.1136/esmoopen-2017-000213.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther. 2017;178:83–91. https://doi.org/10.1016/j.pharmthera.2017.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83. https://doi.org/10.1038/nrclinonc.2016.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, June CH. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21. https://doi.org/10.1038/nm.3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siminiak N, Czepczyński R, Zaborowski MP, Iżycki D. Immunotherapy in ovarian cancer. Arch Immunol Ther Exp. 2022;70(1):19. https://doi.org/10.1007/s00005-022-00655-8.

    Article  Google Scholar 

  19. Wang W, Liu JR, Zou W. Immunotherapy in ovarian cancer. Surg Oncol Clin N Am. 2019;28(3):447–64. https://doi.org/10.1016/j.soc.2019.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373–9. https://doi.org/10.1111/cas.13027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian L, Xu B, Teng KY, Song M, Zhu Z, Chen Y, Wang J, Zhang J, Feng M, Kaur B, Rodriguez L, Caligiuri MA, Yu J. Targeting Fc receptor-mediated effects and the “don’t eat me” signal with an oncolytic virus expressing an anti-CD47 antibody to treat metastatic ovarian cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2022;28(1):201–14. https://doi.org/10.1158/1078-0432.CCR-21-1248.

    Article  CAS  Google Scholar 

  22. Gebremeskel S, Nelson A, Walker B, Oliphant T, Lobert L, Mahoney D, Johnston B. Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis. J Immunother Cancer. 2021;9(3): e002096. https://doi.org/10.1136/jitc-2020-002096.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hoare J, Campbell N, Carapuça E. Oncolytic virus immunotherapies in ovarian cancer: moving beyond adenoviruses. Porto Biomed J. 2018;3(1): e7. https://doi.org/10.1016/j.pbj.0000000000000007.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simpkins F, Flores A, Chu C, Berek JS, Lucci J 3rd, Murray S, Bauman J, Struemper H, Germaschewski F, Jonak Z, Gardner O, Toso J, Coukos G. Chemoimmunotherapy using pegylated liposomal doxorubicin and interleukin-18 in recurrent ovarian cancer: a phase I dose-escalation study. Cancer Immunol Res. 2013;1(3):168–78. https://doi.org/10.1158/2326-6066.CIR-13-0098.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, Guo H. Dendritic cell vaccines in ovarian cancer. Front Immunol. 2021;11: 613773. https://doi.org/10.3389/fimmu.2020.613773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Block MS, Dietz AB, Gustafson MP, Kalli KR, Erskine CL, Youssef B, Vijay GV, Allred JB, Pavelko KD, Strausbauch MA, Lin Y, Grudem ME, Jatoi A, Klampe CM, Wahner-Hendrickson AE, Weroha SJ, Glaser GE, Kumar A, Langstraat CL, Solseth ML, Cannon MJ. Th17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat Commun. 2020;11(1):5173. https://doi.org/10.1038/s41467-020-18962-z.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Vlad AM, Budiu RA, Lenzner DE, Wang Y, Thaller JA, Colonello K, Crowley-Nowick PA, Kelley JL, Price FV, Edwards RP. A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol Immunother: CII. 2010;59(2):293–301. https://doi.org/10.1007/s00262-009-0750-3.

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28. https://doi.org/10.1186/s13045-022-01247-x.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49. https://doi.org/10.1016/j.pharmthera.2016.05.004.

    Article  CAS  PubMed  Google Scholar 

  30. Bonati L, Tang L. Cytokine engineering for targeted cancer immunotherapy. Curr Opin Chem Biol. 2021;62:43–52. https://doi.org/10.1016/j.cbpa.2021.01.007.

    Article  CAS  PubMed  Google Scholar 

  31. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–8. https://doi.org/10.1126/science.181845.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, Gillis S, Henney CS, Kronheim SR, Grabstein K, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315(6021):641–7. https://doi.org/10.1038/315641a0.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Fibbe WE, van Damme J, Billiau A, Goselink HM, Voogt PJ, van Eeden G, Ralph P, Altrock BW, Falkenburg JH. Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor. Blood. 1988;71(2):430–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tosato G, Jones KD. Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood. 1990;75(6):1305–10.

    Article  CAS  PubMed  Google Scholar 

  35. Castelli MP, Black PL, Schneider M, Pennington R, Abe F, Talmadge JE. Protective, restorative, and therapeutic properties of recombinant human IL-1 in rodent models. J Immunol. 1988;140(11):3830–7.

    Article  CAS  PubMed  Google Scholar 

  36. Benjamin WR, Tare NS, Hayes TJ, Becker JM, Anderson TD. Regulation of hemopoiesis in myelosuppressed mice by human recombinant IL-1 alpha. J Immunol. 1989;142(3):792–9.

    Article  CAS  PubMed  Google Scholar 

  37. Stork L, Barczuk L, Kissinger M, Robinson W. Interleukin-1 accelerates murine granulocyte recovery following treatment with cyclophosphamide. Blood. 1989;73(4):938–44.

    Article  CAS  PubMed  Google Scholar 

  38. Neta R, Monroy R, MacVittie TJ. Utility of interleukin-1 in therapy of radiation injury as studied in small and large animal models. Biotherapy. 1989;1(4):301–11. https://doi.org/10.1007/BF02171006.

    Article  CAS  PubMed  Google Scholar 

  39. Verschraegen CF, Kudelka AP, Termrungruanglert W, de Leon CG, Edwards CL, Freedman RS, Kavanagh JJ, Vadhan-Raj S. Effects of interleukin-1 alpha on ovarian carcinoma in patients with recurrent disease. Eur J Cancer. 1996;32A(9):1609–11. https://doi.org/10.1016/0959-8049(96)00108-6.

    Article  CAS  PubMed  Google Scholar 

  40. Vadhan-Raj S, Kudelka AP, Garrison L, Gano J, Edwards CL, Freedman RS, Kavanagh JJ. Effects of interleukin-1 alpha on carboplatin-induced thrombocytopenia in patients with recurrent ovarian cancer. J Clin Oncol. 1994;12(4):707–14. https://doi.org/10.1200/JCO.1994.12.4.707.

    Article  CAS  PubMed  Google Scholar 

  41. Recchia F, Di Orio F, Candeloro G, Guerriero G, Piazze J, Rea S. Maintenance immunotherapy in recurrent ovarian cancer: long term follow-up of a phase II study. Gynecol Oncol. 2010;116(2):202–7. https://doi.org/10.1016/j.ygyno.2009.09.042.

    Article  CAS  PubMed  Google Scholar 

  42. Fernández-Aceñero MJ, Galindo-Gallego M, Sanz J, Aljama A. Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer. 2000;88(7):1544–8.

    Article  PubMed  Google Scholar 

  43. Rivoltini L, Viggiano V, Spinazzè S, Santoro A, Colombo MP, Takatsu K, Parmiani G. In vitro anti-tumor activity of eosinophils from cancer patients treated with subcutaneous administration of interleukin 2: role of interleukin 5. Int J Cancer. 1993;54(1):8–15. https://doi.org/10.1002/ijc.2910540103.

    Article  CAS  PubMed  Google Scholar 

  44. Samoszuk M. Eosinophils and human cancer. Histol Histopathol. 1997;12(3):807–12.

    CAS  PubMed  Google Scholar 

  45. Lebel-Binay S, Berger A, Zinzindohoué F, Cugnenc P, Thiounn N, Fridman WH, Pagès F. Interleukin-18: biological properties and clinical implications. Eur Cytokine Netw. 2000;11(1):15–26.

    CAS  PubMed  Google Scholar 

  46. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73(2):213–24. https://doi.org/10.1189/jlb.0602313.

    Article  CAS  PubMed  Google Scholar 

  47. Kioi M, Takahashi S, Kawakami M, Kawakami K, Kreitman RJ, Puri RK. Expression and targeting of interleukin-4 receptor for primary and advanced ovarian cancer therapy. Cancer Res. 2005;65(18):8388–96. https://doi.org/10.1158/0008-5472.CAN-05-1043.

    Article  CAS  PubMed  Google Scholar 

  48. Green DS, Husain SR, Johnson CL, Sato Y, Han J, Joshi B, Hewitt SM, Puri RK, Zoon KC. Combination immunotherapy with IL-4 Pseudomonas exotoxin and IFN-α and IFN-γ mediate antitumor effects in vitro and in a mouse model of human ovarian cancer. Immunotherapy. 2019;11(6):483–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaser EC, Lequio M, Zhu Z, Hunzeker ZE, Heslin AJ, D’mello KP, Xiao H, Bai Q, Wakefield MR, Fang Y. Ovarian cancer immunotherapy en route: IL9 inhibits growth of ovarian cancer and upregulates its expression of Ox40L and 4–1BBL. Eur J Gynaecol Oncol. 2022;43(2):163–8. https://doi.org/10.31083/j.ejgo4302021.

    Article  Google Scholar 

  50. Whitworth JM, Alvarez RD. Evaluating the role of IL-12 based therapies in ovarian cancer: a review of the literature. Expert Opin Biol Ther. 2011;11(6):751–62. https://doi.org/10.1517/14712598.2011.566854.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng X, Zhao Z, Ventura E, Gran B, Shindler KS, Rostami A. The PD-1/PD-L pathway is up-regulated during IL-12-induced suppression of EAE mediated by IFN-gamma. J Neuroimmunol. 2007;185(1–2):75–86. https://doi.org/10.1016/j.jneuroim.2007.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiong HY, Ma TT, Wu BT, Lin Y, Tu ZG. IL-12 regulates B7–H1 expression in ovarian cancer-associated macrophages by effects on NF-κB signalling. Asian Pac J Cancer Prev: APJCP. 2014;15(14):5767–72. https://doi.org/10.7314/apjcp.2014.15.14.5767.

    Article  PubMed  Google Scholar 

  53. Ripley D, Shoup B, Majewski A, Chegini N. Differential expression of interleukins IL-13 and IL-15 in normal ovarian tissue and ovarian carcinomas. Gynecol Oncol. 2004;92(3):761–8. https://doi.org/10.1016/j.ygyno.2003.12.011.

    Article  CAS  PubMed  Google Scholar 

  54. Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J Neurooncol. 2003;65(1):37–48. https://doi.org/10.1023/a:1026242432647.

    Article  PubMed  Google Scholar 

  55. Kawakami K, Husain SR, Kawakami M, Puri RK. Improved anti-tumor activity and safety of interleukin-13 receptor targeted cytotoxin by systemic continuous administration in head and neck cancer xenograft model. Mol Med. 2002;8(8):487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kioi M, Kawakami M, Shimamura T, Husain SR, Puri RK. Interleukin-13 receptor alpha2 chain: a potential biomarker and molecular target for ovarian cancer therapy. Cancer. 2006;107(6):1407–18. https://doi.org/10.1002/cncr.22134.

    Article  CAS  PubMed  Google Scholar 

  57. Shimamura T, Husain SR, Puri RK. The IL-4 and IL-13 pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg Focus. 2006;20(4):E11. https://doi.org/10.3171/foc.2006.20.4.6.

    Article  PubMed  Google Scholar 

  58. Felices M, Chu S, Kodal B, Bendzick L, Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS, Geller MA. IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer. Gynecol Oncol. 2017;145(3):453–61. https://doi.org/10.1016/j.ygyno.2017.02.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van der Meer JMR, Maas RJA, Guldevall K, Klarenaar K, de Jonge PKJD, Evert JSH, van der Waart AB, Cany J, Safrit JT, Lee JH, Wagena E, Friedl P, Önfelt B, Massuger LF, Schaap NPM, Jansen JH, Hobo W, Dolstra H. IL-15 superagonist N-803 improves IFNγ production and killing of leukemia and ovarian cancer cells by CD34+ progenitor-derived NK cells. Cancer Immunol Immunother. 2021;70(5):1305–21. https://doi.org/10.1007/s00262-020-02749-8.

    Article  CAS  PubMed  Google Scholar 

  60. Yang T, Wall EM, Milne K, Theiss P, Watson P, Nelson BH. CD8+ T cells induce complete regression of advanced ovarian cancers by an interleukin (IL)-2/IL-15 dependent mechanism. Clin Cancer Res. 2007;13(23):7172–80. https://doi.org/10.1158/1078-0432.CCR-07-1724.

    Article  CAS  PubMed  Google Scholar 

  61. Logan TF, Robertson MJ. Interleukins 18 and 21: biology, mechanisms of action, toxicity, and clinical activity. Curr Oncol Rep. 2006;8(2):114–9. https://doi.org/10.1007/s11912-006-0046-0.

    Article  CAS  PubMed  Google Scholar 

  62. Osaki T, Péron JM, Cai Q, Okamura H, Robbins PD, Kurimoto M, Lotze MT, Tahara H. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J Immunol. 1998;160(4):1742–9.

    Article  CAS  PubMed  Google Scholar 

  63. Coughlin CM, Salhany KE, Wysocka M, Aruga E, Kurzawa H, Chang AE, Hunter CA, Fox JC, Trinchieri G, Lee WM. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Investig. 1998;101(6):1441–52. https://doi.org/10.1172/JCI1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan Z, Zhang Y, Cao D, Shen K, Li Q, Zhang G, Wu X, Cui M, Yue Y, Cheng W, Wang L, Qu P, Tao G, Hou J, Sun L, Meng Y, Li G, Li C, Shi H, Chen Y. Pegylated liposomal doxorubicin in patients with epithelial ovarian cancer. J Ovarian Res. 2021;14(1):12. https://doi.org/10.1186/s13048-020-00736-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines–from host defence to tissue homeostasis. Nat Rev Immunol. 2014;14(12):783–95. https://doi.org/10.1038/nri3766.

    Article  CAS  PubMed  Google Scholar 

  66. Li J, Qin X, Shi J, Wang X, Li T, Xu M, Chen X, Zhao Y, Han J, Piao Y, Zhang W, Qu P, Wang L, Xiang R, Shi Y. A systematic CRISPR screen reveals an IL-20/IL20RA-mediated immune crosstalk to prevent the ovarian cancer metastasis. Elife. 2021;11(10): e66222.

    Article  Google Scholar 

  67. Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR, Curiel DT, Dent P. mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther. 2003;2(4 Suppl 1):S23-37.

    CAS  PubMed  Google Scholar 

  68. Saeki T, Mhashilkar A, Chada S, Branch C, Roth JA, Ramesh R. Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Ther. 2000;7(23):2051–7. https://doi.org/10.1038/sj.gt.3301330.

    Article  CAS  PubMed  Google Scholar 

  69. Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC, Goldstein NI, Fisher PB. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA. 1998;95(24):14400–5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Lebedeva IV, Dent P, Pestka S, Fisher PB. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev. 2003;14(1):35–51. https://doi.org/10.1016/s1359-6101(02)00074-6.

    Article  CAS  PubMed  Google Scholar 

  71. Mahasreshti PJ, Kataram M, Wu H, Yalavarthy LP, Carey D, Fisher PB, Chada S, Alvarez RD, Haisma HJ, Dent P, Curiel DT. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol. 2006;100(3):521–32. https://doi.org/10.1016/j.ygyno.2005.08.042.

    Article  CAS  PubMed  Google Scholar 

  72. Wang S, Guo J, Tang Y, Zheng R, Song M, Sun W. Effects of recombinant human interleukin-24 alone and in combination with cisplatin on the growth of ovarian cancer cells in vitro. Chin J Cell Mol Immunol. 2014;30(1):33–6.

    Google Scholar 

  73. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–18. https://doi.org/10.1016/j.immuni.2013.11.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schmieder A, Multhoff G, Radons J. Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine. 2012;60(2):514–21. https://doi.org/10.1016/j.cyto.2012.06.286.

    Article  CAS  PubMed  Google Scholar 

  75. Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, Lu J, Qin W, Qi Y, Xie F, Jiang J, Wu C, Zhang X, Chen X, Turnquist H, Zhu Y, Lu B. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 2015;194(1):438–45. https://doi.org/10.4049/jimmunol.1401344.

    Article  CAS  PubMed  Google Scholar 

  76. Barbour M, Allan D, Xu H, Pei C, Chen M, Niedbala W, Fukada SY, Besnard AG, Alves-Filho JC, Tong X, Forrester JV, Liew FY, Jiang HR. IL-33 attenuates the development of experimental autoimmune uveitis. Eur J Immunol. 2014;44(11):3320–9. https://doi.org/10.1002/eji.201444671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN, Lukic ML. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer. 2014;134(7):1669–82. https://doi.org/10.1002/ijc.28481.

    Article  CAS  PubMed  Google Scholar 

  78. Tong X, Barbour M, Hou K, Gao C, Cao S, Zheng J, Zhao Y, Mu R, Jiang HR. Interleukin-33 predicts poor prognosis and promotes ovarian cancer cell growth and metastasis through regulating ERK and JNK signaling pathways. Mol Oncol. 2016;10(1):113–25. https://doi.org/10.1016/j.molonc.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  79. Liu X, Hansen DM, Timko NJ, Zhu Z, Ames A, Qin C, Fang Y. Association between interleukin-33 and ovarian cancer. Oncol Rep. 2019;41:1045–50. https://doi.org/10.3892/or.2018.691.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was partially supported by the grant from Des Moines University for Yujiang Fang, M.D., Ph.D. (IOER 112-3119).

Funding

This study was funded by Des Moines University, IOER 112-3119, Yujiang Fang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiang Fang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haines, N.A., Fowler, M.G., Zeh, B.G. et al. Unlocking the ‘ova’-coming power: immunotherapy’s role in shaping the future of ovarian cancer treatment. Med Oncol 41, 67 (2024). https://doi.org/10.1007/s12032-023-02281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02281-6

Keywords

Navigation