Skip to main content
Log in

Age Matters: an Atypical Association Between Polymorphism of MTHFR and Clinical Phenotypes in Children with Schizophrenia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Methylenetetrahydrofolate reductase (MTHFR) polymorphism may increase the risk of schizophrenia in adults and aggravate related symptoms, while it is unknown whether similar risk applies in children with schizophrenia. While average onset age of schizophrenia is between the ages of 15 and 25, there are no studies on the relationship between MTHFR polymorphism and childhood-onset schizophrenia (COS). Here, we aimed to explore the risk of MTHFR polymorphism in children and examine the effects of MTHFR polymorphism on disease onset and clinical features in the COS patients. Pediatric patients with schizophrenia (n = 97) as well as age- and sex-matched controls (n = 92) were enrolled from the pediatric department. We evaluated clinical features including disease onset age, duration, Positive and Negative Syndrome Scale (PANSS), Personal and Social Performance Scale (PSP), and Clinical Global Impression (CGI). The three major MTHFR genotypes (G1793A, C677T, and A1298C) were examined in all subjects and the association between MTHFR polymorphism and clinical features of schizophrenia was analyzed. The G1793A polymorphism and the total number of MTHFR risk alleles were associated with an increased risk of schizophrenia in children. The A1298C polymorphism contributed to prolong the duration time of schizophrenia. Inconsistent with expectations, no significant associations were found between MTHFR C677T polymorphism and schizophrenia in children. Both G1793A and multi-site MTHFR polymorphisms are associated with an increased risk of schizophrenia in children, while A1298C polymorphism contributes to prolonged disease duration. While C677T is known to play major roles in the risk of adult schizophrenia, our finding for the first time suggests an age-specific association between MTHFR polymorphisms and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Applebaum J, Shimon H, Sela BA, Belmaker RH, Levine J (2004) Homocysteine levels in newly admitted schizophrenic patients. J Psychiatr Res 38(4):413–416

    Article  Google Scholar 

  • Asarnow RF, Forsyth JK (2013) Genetics of childhood-onset schizophrenia. Child Adolesc Psychiatr Clin N Am 22(4):675–687. https://doi.org/10.1016/j.chc.2013.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Burd LKJ (1987) A North Dakota prevalence study of schizophrenia presenting in childhood. J Am Acad Child Adolesc Psychiatry 26:347–350

    Article  CAS  Google Scholar 

  • Carlsson A, Carlsson ML (2006) A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialogues Clin Neurosci 8(1):137–142

    PubMed  PubMed Central  Google Scholar 

  • Del Pino I, Rico B, Marin O (2018) Neural circuit dysfunction in mouse models of neurodevelopmental disorders. Curr Opin Neurobiol 48:174–182. https://doi.org/10.1016/j.conb.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35(3):528–548. https://doi.org/10.1093/schbul/sbn187

    Article  PubMed  PubMed Central  Google Scholar 

  • Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6(1):37–46

    Article  CAS  Google Scholar 

  • Froese DS, Huemer M, Suormala T, Burda P, Coelho D, Gueant JL, Landolt MA, Kozich V, Fowler B, Baumgartner MR (2016) Mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum Mutat 37(5):427–438. https://doi.org/10.1002/humu.22970

    Article  CAS  PubMed  Google Scholar 

  • Goghari VM, Sponheim SR (2008) Differential association of the COMT Val158Met polymorphism with clinical phenotypes in schizophrenia and bipolar disorder. Schizophr Res 103(1–3):186–191. https://doi.org/10.1016/j.schres.2008.05.015

    Article  PubMed  Google Scholar 

  • Gonzalez-Castro TB, Hernandez-Diaz Y, Juarez-Rojop IE, Lopez-Narvaez ML, Tovilla-Zarate CA, Fresan A (2016) The role of a catechol-O-methyltransferase (COMT) Val158Met genetic polymorphism in schizophrenia: a systematic review and updated meta-analysis on 32,816 subjects. NeuroMolecular Med 18(2):216–231. https://doi.org/10.1007/s12017-016-8392-z

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nat Genet 7(4):551

    CAS  PubMed  Google Scholar 

  • Goyette P, Christensen B, Rosenblatt DS, Rozen R (1996) Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations in MTHFR. Am J Hum Genet 59(6):1268–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CY, Qian ZZ, Gong FF, Lu SS, Feng F, Wu YL, Yang HY, Sun YH (2015) Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: an updated meta-analysis. J Neural Transm (Vienna, Austria : 1996) 122(2):307–320. https://doi.org/10.1007/s00702-014-1261-8

    Article  CAS  Google Scholar 

  • Jönsson EG, Larsson K, Vares M, Hansen T, Wang AG, Djurovic S, Rønningen KS, Andreassen OA, Agartz I, Werge T (2010) Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder: an association study. Am J Med Genet Part B Neuropsychiatr Genet 147B(6):976–982

    Article  Google Scholar 

  • Joseph L, Ziva S, Ben Ami S, Slava G, Vladimir R, Belmaker RH (2002) Elevated homocysteine levels in young male patients with schizophrenia. Am J Psychiatr 159(10):1790–1792

    Article  Google Scholar 

  • Kempisty B, Mostowska A, Gorska I, Luczak M, Czerski P, Szczepankiewicz A, Hauser J, Jagodzinski PP (2006) Association of 677C>T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene with bipolar disorder and schizophrenia. Neurosci Lett 400(3):267–271. https://doi.org/10.1016/j.neulet.2006.02.055

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Song JY, Joo EJ, Jeong SH, Kim SH, Lee KY, Lee NY, Ahn YM, Kim YS, Roh MS (2011) No association of functional polymorphisms in methlylenetetrahydrofolate reductase and the risk and minor physical anomalies of schizophrenia in Korean population. J Korean Med Sci 26(10):1356–1363. https://doi.org/10.3346/jkms.2011.26.10.1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine J, Stahl Z, Sela BA, Ruderman V, Shumaico O, Babushkin I, Osher Y, Bersudsky Y, Belmaker RH (2006) Homocysteine-reducing strategies improve symptoms in chronic schizophrenic patients with hyperhomocysteinemia. Biol Psychiatry 60(3):265–269

    Article  CAS  Google Scholar 

  • Lewis SJ, Zammit S, Gunnell D, Smith GD (2005) A meta-analysis of the MTHFR C677T polymorphism and schizophrenia risk. Am J Med Genet B Neuropsychiatr Genet 135b(1):2–4. https://doi.org/10.1002/ajmg.b.30170

    Article  PubMed  Google Scholar 

  • Li WX, Cheng F, Zhang AJ, Dai SX, Li GH, Lv WW, Zhou T, Zhang Q, Zhang H, Zhang T, Liu F, Liu D, Huang JF (2017) Folate deficiency and gene polymorphisms of MTHFR, MTR and MTRR elevate the hyperhomocysteinemia risk. Clin Lab 63(3):523–533. https://doi.org/10.7754/Clin.Lab.2016.160917

    Article  CAS  PubMed  Google Scholar 

  • Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10. https://doi.org/10.1016/j.ejmg.2014.10.004

    Article  PubMed  Google Scholar 

  • McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76. https://doi.org/10.1093/epirev/mxn001

    Article  PubMed  Google Scholar 

  • McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A (2017) Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry 174(7):676–685. https://doi.org/10.1176/appi.ajp.2017.16040400

    Article  PubMed  PubMed Central  Google Scholar 

  • Melas PA, Rogdaki M, Osby U, Schalling M, Lavebratt C, Ekstrom TJ (2012) Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J 26(6):2712–2718. https://doi.org/10.1096/fj.11-202069

    Article  CAS  PubMed  Google Scholar 

  • Muntjewerff JW, Hoogendoorn ML, Kahn RS, Sinke RJ, Den Heijer M, Kluijtmans LA, Blom HJ (2005) Hyperhomocysteinemia, methylenetetrahydrofolate reductase 677TT genotype, and the risk for schizophrenia: a Dutch population based case-control study. Am J Med Genet B Neuropsychiatr Genet 135B(1):69–72. https://doi.org/10.1002/ajmg.b.30179

    Article  PubMed  Google Scholar 

  • Nanitsos EK, Nguyen KT, St'astny F, Balcar VJ (2005) Glutamatergic hypothesis of schizophrenia: involvement of Na+/K+-dependent glutamate transport. J Biomed Sci 12(6):975–984. https://doi.org/10.1007/s11373-005-9015-0

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Numata S, Tajima A, Kinoshita M, Kikuchi K, Shimodera S, Tomotake M, Ohi K, Hashimoto R, Imoto I, Takeda M, Ohmori T (2014) Meta-analyses of blood homocysteine levels for gender and genetic association studies of the MTHFR C677T polymorphism in schizophrenia. Schizophr Bull 40(5):1154–1163. https://doi.org/10.1093/schbul/sbt154

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Tuathaigh CM, Fumagalli F, Desbonnet L, Perez-Branguli F, Moloney G, Loftus S, O'Leary C, Petit E, Cox R, Tighe O, Clarke G, Lai D, Harvey RP, Cryan JF, Mitchell KJ, Dinan TG, Riva MA, Waddington JL (2017) Epistatic and independent effects on schizophrenia-related phenotypes following co-disruption of the risk factors Neuregulin-1 x DISC1. Schizophr Bull 43(1):214–225. https://doi.org/10.1093/schbul/sbw120

    Article  PubMed  Google Scholar 

  • Peerbooms OLJ, Os JV, Drukker M, Kenis G, Hoogveld L, Hert MD, Delespaul P, Winkel RV, Rutten BPF (2011) Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun 25(8):1530–1543

    Article  CAS  Google Scholar 

  • Rai V, Yadav U, Kumar P, Yadav SK, Gupta S (2017) Methylenetetrahydrofolate reductase A1298C genetic variant& risk of schizophrenia: a meta-analysis. Indian J Med Res 145(4):437–447. https://doi.org/10.4103/ijmr.IJMR_745_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remschmidt HE, Schulz E, Martin M, Warnke A, Trott GE (1994) Childhood-onset schizophrenia: history of the concept and recent studies. Schizophr Bull 20(4):727–745

    Article  CAS  Google Scholar 

  • Renou S, Hergueta T, Flament M, Mouren-Simeoni MC, Lecrubier Y (2004) Diagnostic structured interviews in child and adolescent's psychiatry. Encephale 30(2):122–134

    Article  CAS  Google Scholar 

  • Roffman JL, Weiss AP, Deckersbach T, Freudenreich O, Henderson DC, Purcell S, Wong DH, Halsted CH, Goff DC (2007) Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia. Schizophr Res 92(1–3):181–188. https://doi.org/10.1016/j.schres.2007.01.003

    Article  PubMed  Google Scholar 

  • Roffman JL, Weiss AP, Purcell S, Caffalette CA, Freudenreich O, Henderson DC, Bottiglieri T, Wong DH, Halsted CH, Goff DC (2008) Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biol Psychiatry 63(1):42–48. https://doi.org/10.1016/j.biopsych.2006.12.017

    Article  CAS  PubMed  Google Scholar 

  • Saetre P, Vares M, Werge T, Andreassen OA, Arinami T, Ishiguro H, Nanko S, Tan EC, Han DH, Roffman JL, Muntjewerff JW, Jagodzinski PP, Kempisty B, Hauser J, Vilella E, Betcheva E, Nakamura Y, Regland B, Agartz I, Hall H, Terenius L, Jonsson EG (2011) Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and age of onset in schizophrenia: a combined analysis of independent samples. Am J Med Genet B Neuropsychiatr Genet 156(2):215–224. https://doi.org/10.1002/ajmg.b.31160

    Article  PubMed  Google Scholar 

  • Taylor EH (1998) Advances in the diagnosis and treatment of children with serious mental illness. Child Welfare 77(3):311–332

    CAS  PubMed  Google Scholar 

  • van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62(5):1044–1051. https://doi.org/10.1086/301825

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav U, Kumar P, Gupta S, Rai V (2016) Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: an updated meta-analysis. Asian J Psychiatr 20:41–51. https://doi.org/10.1016/j.ajp.2016.02.002

    Article  PubMed  Google Scholar 

  • Yoshimi A, Aleksic B, Kawamura Y, Takahashi N, Yamada S, Usui H, Saito S, Ito Y, Iwata N, Inada T, Noda Y, Yamada K, Ozaki N (2010) Gene-wide association study between the methylenetetrahydrofolate reductase gene (MTHFR) and schizophrenia in the Japanese population, with an updated meta-analysis on currently available data. Schizophr Res 124(1–3):216–222. https://doi.org/10.1016/j.schres.2010.07.011

    Article  PubMed  Google Scholar 

  • Zhang C, Xie B, Du YS, Cheng WH, Fang YR, Yu SY (2010) Further evidence that methylenetetrahydrofolate reductase A1298C polymorphism is a risk factor for schizophrenia. J Neural Transm 117(9):1115–1117. https://doi.org/10.1007/s00702-010-0442-3

    Article  CAS  PubMed  Google Scholar 

  • Zintzaras E (2006) C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies. Psychiatr Genet 16(3):105–115. https://doi.org/10.1097/01.ypg.0000199444.77291.e2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank for all patients and healthy subjects for their participation in the study, and Drs. Zuoli Sun, Zhengrong Zhang, Yi He, Christine, and clinical researchers from Beijing Anding Hospital, Capital Medical University for their support and help.

Funding

This work was financially supported by the Beijing Municipal Science & Technology Commission under grant (Z161100000216151) and the National Natural Science Foundation of China under grant (81671248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rena Li or Yi Zheng.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Li, Y., Zhou, Y. et al. Age Matters: an Atypical Association Between Polymorphism of MTHFR and Clinical Phenotypes in Children with Schizophrenia. J Mol Neurosci 69, 485–493 (2019). https://doi.org/10.1007/s12031-019-01382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01382-0

Keywords

Navigation