Skip to main content

Advertisement

Log in

Genetics and Antipsychotic Response in Schizophrenia: an Update

  • Psychosis (A Ahmed, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this article, we will review the recent progress in pharmacogenetics of antipsychotic drugs in regard to treatment response in schizophrenia.

Recent Findings

Research yielded new frontiers in schizophrenia over the past decade: progress in characterizing the first episode, understanding treatment-resistant illness, deciphering the role of inflammation, and developing tools for treatment of neurocognitive deficits. Notwithstanding the new insights into pathogenesis and treatment targets, our ability to individualize the treatment of schizophrenia in clinical practice has not followed suit. Herein, we review the advances that have been made in understanding the genetic variation in traditional drug targets like dopamine, serotonin, and glutamate receptors, as well as genetic markers associated with response in treatment-resistant schizophrenia and neurocognition.

Summary

Practitioners are still longing for a test that would inform the choice of antipsychotic treatment and guide medication dosing, such that patients avoid spending time on failed treatment trials. Treatment-resistant schizophrenia may be one of the first areas to benefit of prediction of patients’ response to antipsychotic medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Foster A, Miller Del D, Buckley PF. Pharmacogenetics and schizophrenia. Psychiatr Clin N Am. 2007;30:417–35.

    Article  Google Scholar 

  2. Kohlrausch FB. Pharmacogenetics in schizophrenia: a review of clozapine studies. Rev Bras Psiquiatr. 2013a;35(3):305–17.

    Article  PubMed  Google Scholar 

  3. Malhotra AK, Murphy GM Jr, Kennedy JL. Pharmacogenetics of psychotropic drug response. Am J Psychiatry. 2004;161:780–96.

    Article  PubMed  Google Scholar 

  4. •• Lally J, Gaughran F, Timms P, Curran SR. Treatment-resistant schizophrenia: current insights on the pharmacogenomics of antipsychotics. Pharmacogenomics Pers Med. 2016;9:117–29. A useful update on understanding of treatment-resistant schizophrenia.

    Article  Google Scholar 

  5. Stilo SA, Murray RM. The epidemiology of schizophrenia: replacing dogma with knowledge. Dialogues Clin Neurosci. 2010;12(3):305–15.

    PubMed  PubMed Central  Google Scholar 

  6. • De Matos LPR, Santana CVN, Souza RP. Meta-analysis of dopamine receptor D1 rs 4532 polymorphism and susceptibility to antipsychotic treatment response. Psychiatry Res. 2015;229:586–8. A comprehensive systematic review and meta-analysis which could not find an association between dopamine D1 rs4532 polymorphism and treatment with various antipsychotics.

    Article  PubMed  Google Scholar 

  7. Ariza M, Garolera M, Jurado MA, Garcia-Garcia I, Hernan I, Sanchez-Garre C, et al. Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and executive function: their interaction with obesity. PLoS One. 2012;7(7):e41482. doi:10.1371/journal.pone.0041482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. •• Reynolds GP, McGowan OO, Dalton CF. Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms. Brit J Clin Pharmacol. 2014;77(4):654–72. A useful review, with particular focus on the role of epigenetic factors in drug response.

    Article  CAS  Google Scholar 

  9. Zhang J-P, Lencz T, Malhotra AK. D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry. 2010;167(7):763–72.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hwang R, Zai C, Tiwari A, Müller DJ, Arranz MJ, Morris AG, et al. Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. pharmacogenomics J. 2010;10(3):200–18.

    Article  CAS  PubMed  Google Scholar 

  11. Vehof J, Burger H, Wilffert B, Al Hadithy A, Alizadeh BZ, Snieder H. GROUP investigators, clinical response to antipsychotic drug treatment: association study of polymorphisms in six candidate genes. Eur Neuropsychopharmacol. 2012;22(9):625–31.

    Article  CAS  PubMed  Google Scholar 

  12. Hwang R, Tiwari AK, Zai CC, Felsky D, Remington E, Wallace T, et al. Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia: replication and exploration. Prog Neuro-Psychoph. 2012;37(1):62, 14p–75. doi:10.1016/j.pnpbp.2011.11.018.

    Article  CAS  Google Scholar 

  13. Xu M, Xing Q, Li S, Zheng Y, Wu S, Gao R, et al. Pharmacogenetic effects of dopamine transporter gene polymorphisms on response to chlorpromazine and clozapine and on extrapyramidal syndrome in schizophrenia. Prog Neuro-Psychoph. 2010;34:1026–32.

    Article  CAS  Google Scholar 

  14. •• Arranz M, Gallego C, Salazar J, Arias B. Pharmacogenetic studies of drug response in schizophrenia. Expert Rev Precis Med Drug Dev. 2016;1:79–91. doi:10.1080/23808993.2016.1140554. An excellent review of possible clinical applications and future directions in schizophrenia pharmacogenetics.

    Article  Google Scholar 

  15. Costas J, Sanjuán J, Ramos-Ríos R, Paz E, Agra S, Ivorra JL, et al. Heterozygosity at catechol-O-methyltransferase Val158Met and schizophrenia: new data and meta-analysis. J Psychiatr Res. 2011;45(1):7–14.

    Article  PubMed  Google Scholar 

  16. Barnett JH, Scoriels L, Munafò MR. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry. 2008;64(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  17. Bosia M, Lorenzi C, Pirovano A, Guglielmino C, Cocchi F, Spangaro M, et al. COMT Val158Met and 5-HT1A-R -1019 C/G polymorphisms: effects on the negative symptom response to clozapine. Pharmacogenomics. 2015;16:35–44. doi:10.2217/pgs.14.150.

    Article  CAS  PubMed  Google Scholar 

  18. Chen CY, Yeh YW, Kuo SC, Ho PS, Liang CS, Yen CH, et al. Catechol-O-methyltransferase gene variants may associate with negative symptom response and plasma concentrations of prolactin in schizophrenia after amisulpride treatment. Psychoneuroendocrinology. 2016;65:67–75.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Fang Y, Shen Y, Xu Q. Analysis of association between the catechol-O-methyltransferase (COMT) gene and negative symptoms in chronic schizophrenia. Psychiatry Res. 2010;179(2):147–50.

    Article  CAS  PubMed  Google Scholar 

  20. • Lindenmayer JP, Khan A, Lachman H, McGurk SR, Goldring A, Thanju A, et al. COMT genotype and response to cognitive remediation in schizophrenia. Schizophr Res. 2015;168(1):279–84. This paper employs a new approach by studying cognition as treatment outcome and shows that low activity variants of COMT are associated with greater response to neurocognitive remediation.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Masellis M. Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology. 1998;19:123–32. doi:10.1016/S0893-133X(98)00007-4.

    Article  CAS  PubMed  Google Scholar 

  22. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27:1159–72. doi:10.1016/j.pnpbp.2003.09.010.

    Article  CAS  Google Scholar 

  23. Reynolds GP, Arranz B, Templeman LA, Fertuzinhos S, San L. Effect of 5-HT 1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry. 2006;163:1826–9. doi:10.1176/ajp.2006.163.10.1826.

    Article  PubMed  Google Scholar 

  24. Crisafulli C, Chiesa A, Han C, Lee S-J, Park MH, Balzarro B, et al. Case–control association study for 10 genes in patients with schizophrenia: influence of 5HTR1A variation rs10042486 on schizophrenia and response to antipsychotics. Eur Arch Psychiatry Clin Neurosci. 2012;262:199–205. doi:10.1007/s00406-011-0278-3.

    Article  PubMed  Google Scholar 

  25. Chiesa A, Lia L, Han C, Lee S-J, Pae C-U, Serretti A. Investigation of epistasis between DAOA and 5HTR1A variants on clinical outcomes in patients with schizophrenia. Genet Test Mol Biomark. 2013;17:504–7. doi:10.1089/gtmb.2012.0484.

    Article  CAS  Google Scholar 

  26. Takekita Y, Fabbri C, Kato M, Nonen S, Sakai S, Sunada N, et al. HTR1A gene polymorphisms and 5-HT1A receptor partial agonist antipsychotics efficacy in schizophrenia. J Clin Psychopharmacol. 2015;35:220–7. doi:10.1097/JCP.0000000000000304.

    Article  CAS  PubMed  Google Scholar 

  27. Tang H, Dalton CF, Srisawat U, Zhang ZJ, Reynolds GP. Methylation at a transcription factor-binding site on the 5-HT1A receptor gene correlates with negative symptom treatment response in first episode schizophrenia. Int J Neuropsychopharmacol. 2014;17:645–9. doi:10.1017/S1461145713001442.

    Article  CAS  PubMed  Google Scholar 

  28. Takekita Y, Fabbri C, Kato M, Koshikawa Y, Tajika A, Kinoshita T, et al. HTR1A polymorphisms and clinical efficacy of antipsychotic drug treatment in schizophrenia: a meta-analysis. Int J Neuropsychopharmacol. 2016;19:pyv125. doi:10.1093/ijnp/pyv125.

    Article  PubMed  Google Scholar 

  29. Blasi G, De Virgilio C, Papazacharias A, Taurisano P, Gelao B, Fazio L, et al. Converging evidence for the Association of Functional Genetic Variation in the serotonin receptor 2a gene with prefrontal function and olanzapine treatment. JAMA Psychiatry. 2013;70:921. doi:10.1001/jamapsychiatry.2013.1378.

    Article  CAS  PubMed  Google Scholar 

  30. Blasi G, Selvaggi P, Fazio L, Antonucci LA, Taurisano P, Masellis R, et al. Variation in dopamine D2 and serotonin 5-HT2A receptor genes is associated with working memory processing and response to treatment with antipsychotics. Neuropsychopharmacology. 2015;40:1600–8. doi:10.1038/npp.2015.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parsons MJ, D’Souza UM, Arranz M-J, Kerwin RW, Makoff AJ. The –1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry. 2004;56:406–10. doi:10.1016/j.biopsych.2004.06.020.

    Article  CAS  PubMed  Google Scholar 

  32. Yan Y, Wei Z, Xiong Y, Jiang J, Huo R, Shen L, et al. Association of HTR2A polymorphisms with risperidone efficacy in Chinese Han schizophrenia patients. Klin Psikofarmakol Bul-Bull Clin Psychopharmacol. 2015;25:4. doi:10.5455/bcp.20140802124158.

    Article  Google Scholar 

  33. Yildiz SH, Akilli A, Bagcioglu E, Ozdemir Erdogan M, Coskun KS, Alpaslan AH, et al. Association of schizophrenia with T102C (rs6313) and 1438 A/G (rs6311) polymorphisms of HTR2A gene. Acta Neuropsychiatr. 2013;25:342–8. doi:10.1017/neu.2013.22.

    Article  PubMed  Google Scholar 

  34. Sun L, Xu P, Zhou Y-G, Zuo S-R, Liu Y-P. Meta-analysis of polymorphism rs6311 and rs6313 in the 5-HT 2A R gene and schizophrenia. Nord J Psychiatry. 2017;71:1–11. doi:10.1080/08039488.2016.1217350.

    Article  PubMed  Google Scholar 

  35. Thompson AJ, Lummis SC. The 5-HT 3 receptor as a therapeutic target. Expert Opin Ther Targets. 2007;11:527–40. doi:10.1517/14728222.11.4.527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kishi T, Mukai T, Matsuda Y, Iwata N. Selective serotonin 3 receptor antagonist treatment for schizophrenia: meta-analysis and systematic review. NeuroMolecular Med. 2014;16:61–9. doi:10.1007/s12017-013-8251-0.

    Article  CAS  PubMed  Google Scholar 

  37. Rajkumar AP, Poonkuzhali B, Kuruvilla A, Srivastava A, Jacob M, Jacob KS. Outcome definitions and clinical predictors influence pharmacogenetic associations between HTR3A gene polymorphisms and response to clozapine in patients with schizophrenia. Psychopharmacology. 2012;224:441–9. doi:10.1007/s00213-012-2773-2.

    Article  CAS  PubMed  Google Scholar 

  38. • Pandya CD, Kutiyanawalla A, Pillai A. BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr. 2013;6:22–8. A useful review of the possible role of BDNF in schizophrenia.

    Article  PubMed  Google Scholar 

  39. Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T, et al. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res. 2002;110:249–57.

    Article  CAS  PubMed  Google Scholar 

  40. Jockers-Scherubl MC, Danker-Hopfe H, Mahlberg R, Selig F, Rentzsch J, Schurer F, et al. Brain-derived neurotrophic factor serum concentrations are increased in drug-naive schizophrenic patients with chronic cannabis abuse and multiple substance abuse. Neurosci Lett. 2004;371:79–83.

    Article  PubMed  Google Scholar 

  41. Pirildar S, Gonul AS, Taneli F, Akdeniz F. Low serum levels of brain-derived neurotrophic factor in patients with schizophrenia do not elevate after antipsychotic treatment. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28:709–13.

    Article  CAS  Google Scholar 

  42. Domenici E, Wille DR, Tozzi F, Prokopenko I, Miller S, McKeown A, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One. 2010;5:e9166.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gonzalez-Pinto A, Mosquera F, Palomino A, Alberich S, Gutierrez A, Haidar K, et al. Increase in brain-derived neurotrophic factor in first episode psychotic patients after treatment with atypical antipsychotics. Int Clin Psychopharmacol. 2010;25:241–5.

    Article  PubMed  Google Scholar 

  44. Nikolac Perkovic M, Nedic Erjavec G, Zivkovic M, Sagud M, Uzun S, Mihaljevic-Peles A, et al. Association between the brain-derived neurotrophic factor Val66Met polymorphism and therapeutic response to olanzapine in schizophrenia patients. Psychopharmacology. 2014;231(18):3757–64. doi:10.1007/s00213-014-3515-4.

    Article  CAS  PubMed  Google Scholar 

  45. Lee BH, Kim YK. Increased plasma brain-derived neurotrophic factor, not nerve growth factor-beta, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology. 2009;59(1):51–8. doi:10.1159/000205518.

    Article  CAS  PubMed  Google Scholar 

  46. Xu M, Li S, Xing Q, Gao R, Feng G, Lin Z, et al. Genetic variants in the BDNF gene and therapeutic response to risperidone in schizophrenia patients: a pharmacogenetic study. Eur J Hum Genet. 2010;18(6):707–12. doi:10.1038/ejhg.2009.238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hong CJ, Yu YW, Lin CH, Tsai SJ. An association study of a brain-derived neurotrophic factor Val66Met polymorphism and clozapine response of schizophrenic patients. Neurosci Lett. 2003;349(3):206–8.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang JP, Lencz T, Geisler S, DeRosse P, Bromet EJ, Malhotra AK. Genetic variation in BDNF is associated with antipsychotic treatment resistance in patients with schizophrenia. Schizophr Res. 2013;146(1–3):285–8. doi:10.1016/j.schres.2013.01.020.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis. Psychiatry Res. 2015;226(1):1–3.

    Article  PubMed  Google Scholar 

  50. Vinogradov S, Fisher M, Holland C, Shelly W, Wolkowitz O, Mellon SH. Is serum brain-derived neurotrophic factor a biomarker for cognitive enhancement in schizophrenia? Biol Psychiatry. 2009;66(6):549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: pathways underpinning clinical staging and therapeutic corollaries. Aust NZ J Psychiatr. 2014;48(6):512–29.

    Article  Google Scholar 

  52. Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, et al. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75(5):e11–3. doi:10.1016/j.biopsych.2013.06.011.

    Article  CAS  PubMed  Google Scholar 

  53. Bishop JR, Reilly JL, Harris MS, Patel SR, Kittles R, Badner JA, et al. Pharmacogenetic associations of the type-3 metabotropic glutamate receptor (GRM3) gene with working memory and clinical symptom response to antipsychotics in first-episode schizophrenia. Psychopharmacology. 2015;232(1):145–54. doi:10.1007/s00213-014-3649-4.

    Article  CAS  PubMed  Google Scholar 

  54. Stevenson JM, Reilly JL, Harris MS, Patel SR, Weiden PJ, Prasad KM, et al. Antipsychotic pharmacogenomics in first episode psychosis: a role for glutamate genes. Transl Psychiatry. 2016;6:e739. doi:10.1038/tp.2016.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taylor DL, Tiwari AK, Lieberman JA, Potkin SG, Meltzer HY, Knight J, et al. Genetic association analysis of N-methyl-D-aspartate receptor subunit gene GRIN2B and clinical response to clozapine. Hum Psychopharmacol. 2016;31(2):121–34. doi:10.1002/hup.2519.

    Article  CAS  PubMed  Google Scholar 

  56. • Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K, et al. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry. 2009;14(8):804–19. doi:10.1038/mp.2008.56. A new approach in drug development by studying a possible genetic profile to would indicate likelihood of drug response.

    Article  CAS  PubMed  Google Scholar 

  57. Fijal BA, Stauffer VL, Kinon BJ, Conley RR, Hoffmann VP, Witte MM, et al. Analysis of gene variants previously associated with iloperidone response in patients with schizophrenia who are treated with risperidone. J Clin Psychiatr. 2011;73(3):367–71.

    Article  Google Scholar 

  58. Foster A, Wang Z, Usman M, Stirewalt E, Buckley PF. Pharmacogenetics of antipsychotic adverse effects: case studies and a literature review for clinicians. Neuropsychiatr Dis Treat. 2007;3(6):965–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ravyn D, Ravyn V, Lowney R, Nasrallah HA. CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr Res. 2013;149(1–3):1–14.

    Article  PubMed  Google Scholar 

  60. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9:442–73. doi:10.1038/sj.mp.4001494.

    Article  CAS  PubMed  Google Scholar 

  61. De Leon J, Armstrong SC, Cozza KL. Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics. 2006;47(1):75–85.

    Article  PubMed  Google Scholar 

  62. •• Fleeman N, Dundar Y, Dickson R, Jorgensen A, Pushpakom S, McLeod C, et al. Cytochrome P450 testing for prescribing antipsychotics in adults with schizophrenia: systematic review and meta-analyses. Pharmacogenomics J. 2011;11(1):1–14. A useful guide for clinicians about clinical utility of CYP2D6 testing in patients being prescribed antipsychotics.

    Article  CAS  PubMed  Google Scholar 

  63. Kane JM, Honigfeld G, Singer J, Meltzer HY. and the Clozaril Collaborative Study Group. Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry. 1988;45(9):789–96.

    Article  CAS  PubMed  Google Scholar 

  64. Tracy DK, Shergill S, Treatment-refractory schizophrenia: definition and assessment, In Buckley P, Gaughran F, editors. Treatment Refractory Schizophrenia, a Clinical Conundrum, Springer, 2014.

  65. Elkis H and Buckley, PF, Biology of schizophrenia: is treatment refractoriness synonymous with severity of illness [A.K.A. Is This a Drug Efficacy Problem or an Expression of Severe Illness?] in Buckley P, Gaughran F, editors. Treatment Refractory Schizophrenia, a Clinical Conundrum, Springer, 2014.

  66. Foster A, Buckley P, Pharmacogenetics and treatment-resistant schizophrenia, in Buckley P, Gaughran F, editors. Treatment Refractory Schizophrenia, a Clinical Conundrum, Springer, 2014.

  67. Arranz MJ, Munro J, Birkett J, Bolonna A, Mancama D. Pharmacogenetic prediction of clozapine response. Lancet. 2000;355(9215):1615–6.

    Article  CAS  PubMed  Google Scholar 

  68. Huang, E, Zai CC, Gonclaves V, Tiwari A, Kennedy JL, An updated genetic model for clozapine response, presentation at American Society for Clinical Psychopharmacology, Miami, FL, May 2017.

  69. • McClay JL, Adkins DE, Åberg K, Bukszár J, Khachane AN, Keefe RS, et al. Genome-wide pharmacogenomic study of neurocognition as an indicator of antipsychotic treatment response in schizophrenia. Neuropsychopharmacology. 2011;36(3):616–26. This paper uses cognitive domains as an indication of antipsychotic treatment response and uses the genome-wide association studies with SNPs in a CATIE study sample; the associations of three SNPs with working memory and processing speed reached significance.

    Article  CAS  PubMed  Google Scholar 

  70. Blasi G, Napolitano F, Ursini G, Taurisano P, Romano R, Caforio G, et al. DRD2/AKT1 interaction on D2 c-AMP independent signaling, attentional processing, and response to olanzapine treatment in schizophrenia. PNAS. 2011;108(3):1158–63. doi:10.1073/pnas.1013535108.

    Article  CAS  PubMed  Google Scholar 

  71. Volpi S, Potkin SG, Malhotra AK, Licamele L. Lavedan C applicability of a genetic signature for enhanced iloperidone efficacy in the treatment of schizophrenia. J Clin Psychiatr. 2009;70(6):801–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Foster.

Ethics declarations

Conflict of Interest

Adriana Foster, Asim Nisar, Gabriel Sanchez, and Michelle Trieu declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Psychosis

Glossary of Terms

Allele

One of several alternative forms of a gene at a given locus (a SNP has two alleles)

Epistasis

One gene locus masks or modifies the phenotype of another gene locus (phenotypes can change due to gene interactions)

Haplotype

Combination of alleles at two or more closely linked gene loci on the same chromosome (for example, the human leukocyte antigen system)

Intron

Sequence of DNA that does not contribute to the genetic information translated into the amino acid sequence of a protein molecule

P

Short arm of chromosome

Polymorphism

Genetic variation that occurs with a frequency of 1% or more in population

q

Long arm of chromosome

SNP

(single-nucleotide polymorphism) Substitution from one nucleotide into another (for example, cytosine [C] to timine [T]) creating a mutation in DNA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, A., Nisar, A., Sanchez, G. et al. Genetics and Antipsychotic Response in Schizophrenia: an Update. Curr Behav Neurosci Rep 4, 221–230 (2017). https://doi.org/10.1007/s40473-017-0119-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0119-4

Keywords

Navigation