Skip to main content

Advertisement

Log in

Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers

  • Review
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment.

Results

Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)’s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well.

Conclusions

Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Gillespie MR, Rai V, Agrawal S, Nandipati KC. The role of microbiota in the pathogenesis of esophageal adenocarcinoma. Biology (Basel). 2021;10(8). https://doi.org/10.3390/biology10080697.

  3. Kumar B, Lam S, Adam M, Gilroy R, Pallen MJ. The oesophageal microbiome and cancer: hope or hype? Trends Microbiol. 2022;30(4):322–9. https://doi.org/10.3390/biology10080697.

    Article  CAS  PubMed  Google Scholar 

  4. Dan W, Peng L, Yan B, Li Z, Pan F. Human microbiota in esophageal aerapeutic implications. Front Microbiol. 2022;12. https://doi.org/10.3389/fmicb.2021.791274.

  5. Lv J, Guo L, Liu JJ, Zhao HP, Zhang J, Wang JH. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J Gastroenterol. 2019;25(18):2149–61. https://doi.org/10.3748/wjg.v25.i18.2149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang X, Sun X, Chu J, Sun W, Yan S, Wang Y. Gut microbiota and microbiota-derived metabolites in colorectal cancer: enemy or friend. World J Microbiol Biotechnol. 2023;39(11):291. https://doi.org/10.1007/s11274-023-03742-w.

    Article  PubMed  Google Scholar 

  7. Pandey A, Lieu CH, Kim SS. The local microbiome in esophageal cancer and treatment response: a review of emerging data and future directions. Cancers (Basel). 2023;15(14):3562. https://doi.org/10.3390/cancers15143562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xue X, Li R, Chen Z, Li G, Liu B, Guo S, Yue Q, Yang S, Xie L, Zhang Y, Zhao J, Tan R. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol. 2023;14:1235827. https://doi.org/10.3389/fimmu.2023.1235827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koneru S, Thiruvadi V, Ramesh M. Gut microbiome and its clinical implications: exploring the key players in human health. Curr Opin Infect Dis. 2023;36(5):353–9. https://doi.org/10.1097/QCO.0000000000000958.

    Article  PubMed  Google Scholar 

  10. Maddern AS, Coller JK, Bowen JM, Gibson RJ. The association between the gut microbiome and development and progression of cancer treatment adverse effects. Cancers (Basel). 2023;15(17):4301. https://doi.org/10.3390/cancers15174301.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stewart OA, Wu F, Chen Y. The role of gastric microbiota in gastric cancer. Gut Microbes. 2020;11(5):1220–30. https://doi.org/10.1080/19490976.2020.1762520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bessède E, Mégraud F. Microbiota and gastric cancer. Semin Cancer Biol. 2022;86(3):11–7. https://doi.org/10.1016/j.semcancer.2022.05.001.

    Article  CAS  PubMed  Google Scholar 

  13. Majewski M, Mertowska P, Mertowski S, Smolak K, Grywalska E, Torres K. Microbiota and the immune system—actors in the gastric cancer story. Cancers (Basel). 2022;14(15):3832. https://doi.org/10.3390/cancers14153832.

    Article  CAS  PubMed  Google Scholar 

  14. Ramai D, Salati M, Pomati G, Amoroso C, Facciorusso A, Botticelli A, Ghidini M. Antibiotics, the microbiome and gastrointestinal cancers: a causal interference? Curr Opin Pharmacol. 2022;67:102315. https://doi.org/10.1016/j.coph.2022.102315.

    Article  CAS  PubMed  Google Scholar 

  15. Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi A, Facciotti F. Gut microbiota manipulation as a tool for colorectal cancer management: recent advances in its use for therapeutic purposes. Int J Mol Sci. 2020;21(15):5389. https://doi.org/10.3390/ijms21155389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pereira-Marques J, Ferreira RM, Machado JC, Figueiredo C. The influence of the gastric microbiota in gastric cancer development. Best Pract Res Clin Gastroenterol. 2021;50–51:101734. https://doi.org/10.1016/j.bpg.2021.101734.

    Article  PubMed  Google Scholar 

  17. Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16(10):1–9. https://doi.org/10.1007/S11912-014-0406-0.

    Article  CAS  Google Scholar 

  18. Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis. 2014;35(2):249–55. https://doi.org/10.1093/CARCIN/BGT392.

    Article  CAS  PubMed  Google Scholar 

  19. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science (1979). 2012;338(6103):120–3. https://doi.org/10.1126/SCIENCE.1224820.

    Article  CAS  Google Scholar 

  20. Hattori N, Ushijima T. Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med. 2016;8(1):10. https://doi.org/10.1186/S13073-016-0267-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, Yan J, Wu M. Gut microbiota influence tumor development and alter interactions with the human immune system. J Exp Clin Cancer Res. 2021;40(1):42. https://doi.org/10.1186/S13046-021-01845-6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klampfer L. Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets. 2011;11(4):451–64. https://doi.org/10.2174/156800911795538066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raponi M, Winkler H, Dracopoli NC. KRAS mutations predict response to EGFR inhibitors. Curr Opin Pharmacol. 2008;8(4):413–8. https://doi.org/10.1016/j.coph.2008.06.006.

    Article  CAS  PubMed  Google Scholar 

  24. Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, Shields PG, Ham AJ, Swenberg JA, Marrogi AJ, Harris CC. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 2000;60(13):3333–7.

    CAS  PubMed  Google Scholar 

  25. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32. https://doi.org/10.1038/NRI.2017.7.

    Article  CAS  PubMed  Google Scholar 

  26. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–44. https://doi.org/10.1126/SCIENCE.AAD9378.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vijay-Kumar M, Gewirtz AT. Flagellin: key target of mucosal innate immunity. Mucosal Immunol. 2009;2(3):197–205. https://doi.org/10.1038/mi.2009.9.

    Article  CAS  PubMed  Google Scholar 

  28. Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol. 2015;159(2):122–7. https://doi.org/10.1016/j.clim.2015.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016;4(1). https://doi.org/10.1186/S40170-016-0151-Y.

  30. Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis. 2002;2(3):171–9. https://doi.org/10.1016/S1473-3099(02)00226-8.

    Article  CAS  PubMed  Google Scholar 

  31. Hermann C, et al. Cytokine induction by purified lipoteichoic acids from various bacterial species - role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-γ release. Eur J Immunol. 2002;32(2):541–51. https://doi.org/10.1002/1521-4141(200202)32:2%3c541::AID-IMMU541%3e3.0.CO;2-P.

    Article  CAS  PubMed  Google Scholar 

  32. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72. https://doi.org/10.1038/nrmicro3344.

    Article  CAS  PubMed  Google Scholar 

  33. Carino A, Graziosi L, D’Amore C, Cipriani S, Marchianò S, Marino E, Zampella A, Rende M, Distrutti E, Donini A, Fiorucci S. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget. 2016;7(38):61021–35. https://doi.org/10.18632/oncotarget.10477.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saretzki G. Cellular senescence in the development and treatment of cancer. Curr Pharm Des. 2010;16(1):79–100.

    Article  CAS  PubMed  Google Scholar 

  35. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science. 2013;341(6145):569–73. https://doi.org/10.1126/SCIENCE.1241165.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50. https://doi.org/10.1038/nature12721.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. https://doi.org/10.1038/nature12726.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36. https://doi.org/10.1042/BCJ20160510.

    Article  CAS  PubMed  Google Scholar 

  39. Quante M, Graham TA, Jansen M. Insights into the pathophysiology of esophageal adenocarcinoma. Gastroenterology. 2018;154(2):406–20. https://doi.org/10.1053/j.gastro.2017.09.046.

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137(2):588–97. https://doi.org/10.1053/j.gastro.2009.04.046.

    Article  PubMed  Google Scholar 

  41. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA. 2004;101(12):4250–5. https://doi.org/10.1073/pnas.0306398101.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peter S, et al. Mucosa-associated microbiota in Barrett’s esophagus, dysplasia, and esophageal adenocarcinoma differ similarly compared with healthy controls. Clin Transl Gastroenterol. 2020;11(8): e00199. https://doi.org/10.14309/ctg.0000000000000199.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Amir I, Konikoff FM, Oppenheim M, Gophna U, Half EE. Gastric microbiota is altered in oesophagitis and Barrett’s oesophagus and further modified by proton pump inhibitors. Environ Microbiol. 2014;16(9):2905–14. https://doi.org/10.1111/1462-2920.12285.

    Article  CAS  PubMed  Google Scholar 

  44. Blackett KL, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality? Aliment Pharmacol Ther. 2013;37(11):1084–92. https://doi.org/10.1111/apt.12317.

    Article  CAS  PubMed  Google Scholar 

  45. Snider EJ, et al. Alterations to the esophageal microbiome associated with progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer Epidemiol Biomark Prev. 2019;28(10):1687–93. https://doi.org/10.1158/1055-9965.EPI-19-0008.

    Article  Google Scholar 

  46. Yamamura K, et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res. 2016;22(22):5574–81. https://doi.org/10.1158/1078-0432.CCR-16-1786.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol. 2023;27(14):1130001. https://doi.org/10.3389/fmicb.2023.1130001.

    Article  Google Scholar 

  48. Bik EM, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA. 2006. https://doi.org/10.1073/pnas.0506655103.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ferreira RM, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 2018;67(2):226–36. https://doi.org/10.1136/gutjnl-2017-314205.

    Article  CAS  PubMed  Google Scholar 

  50. Zilberstein B, Quintanilha AG, Santos MAA, Pajecki D, Moura EG, Alves PRA, Filho FM, Ubriaco de Souza JA, Gama-Rodrigues J. Clinical sciences digestive tract microbiota in healthy volunteers. Clinics (Sao Paulo). 2007;62(1):47–54. https://doi.org/10.1590/s1807-59322007000100008.

    Article  PubMed  Google Scholar 

  51. Choi IJ, et al. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N Engl J Med. 2018;378(12):1085–95. https://doi.org/10.1056/NEJMOA1708423.

    Article  CAS  PubMed  Google Scholar 

  52. Boehm ET, Thon C, Kupcinskas J, Steponaitiene R, Skieceviciene S, Canbay A, Malfertheiner P, Link A. Fusobacterium nucleatum is associated with worse prognosis in Lauren’s diffuse type gastric cancer patients. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-73448-8.

  53. Maldonado-Contreras A, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 2011;5(4):574–9. https://doi.org/10.1038/ismej.2010.149.

    Article  CAS  PubMed  Google Scholar 

  54. Liu X, et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 2019;40:336–48. https://doi.org/10.1016/j.ebiom.2018.12.034.

    Article  PubMed  Google Scholar 

  55. Amieva M, Peek RM Jr. Pathobiology of Helicobacter pylori–induced gastric cancer. Gastroenterology. 2016;150(1):64–78. https://doi.org/10.1053/j.gastro.2015.09.004. Available: https://www.sciencedirect.com/science/article/pii/S0016508515013128.

  56. Moss SF. The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol. 2017;3(2):183–91. https://doi.org/10.1016/j.jcmgh.2016.12.001.

    Article  PubMed  Google Scholar 

  57. Lee YC, et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology. 2016;150(5):1113-1124.e5. https://doi.org/10.1053/j.gastro.2016.01.028.

    Article  PubMed  Google Scholar 

  58. Khatoon J, Rai RP, Prasad KN. Role of Helicobacter pylori in gastric cancer: updates. World J Gastrointest Oncol. 2016;8(2):147–58. https://doi.org/10.4251/WJGO.V8.I2.147.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287(5457):1497–500. https://doi.org/10.1126/SCIENCE.287.5457.1497.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Kwok T, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449(7164):862–6. https://doi.org/10.1038/nature06187.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Udhayakumar G, Jayanthi V, Devaraj N, Devaraj H. Interaction of MUC1 with β-catenin modulates the WNT target gene cyclinD1 in H. pylori-induced gastric cancer. Mol Carcinog. 2007;46(9):807–17. https://doi.org/10.1002/MC.20311.

    Article  CAS  PubMed  Google Scholar 

  62. Yong X, Tang B, Li BS, Xie R, Hu CJ, Luo G, Qin Y, Dong H, Yang SM. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways. Cell Commun Signal. 2015;13:30. https://doi.org/10.1186/S12964-015-0111-0.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moyat M. Immune responses to Helicobacter pylori infection. World J Gastroenterol. 2014;20(19):5583–93. https://doi.org/10.3748/wjg.v20.i19.5583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease. J Clin Investig. 2004;113(3):321–33. https://doi.org/10.1172/jci200420925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mashima H, et al. Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolation induced by Helicobacter pylori-produced VacA. Infect Immun. 2008;76(6):2296–303. https://doi.org/10.1128/IAI.01573-07.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Suzuki J, et al. Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori–produced cytotoxin VacA. J Clin Invest. 2001;107:363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hotchin NA, Cover TL, Akhtar N. Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the Rac1 GTPase. J Biol Chem. 2000;275(19):14009–12. https://doi.org/10.1074/jbc.C000153200.

    Article  CAS  PubMed  Google Scholar 

  68. Ricci V. Relationship between VacA toxin and host cell autophagy in Helicobacter pylori infection of the human stomach: a few answers, many questions. Toxins. 2016. https://doi.org/10.3390/toxins8070203.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Galmiche A, Rassow J. Targeting of Helicobacter pylori VacA to mitochondria. Gut Microbes. 2010;1(6):392–5. https://doi.org/10.4161/GMIC.1.6.13894.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jain P, Luo ZQ, Blanke SR. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. Proc Natl Acad Sci USA. 2011;108(38):16032–7. https://doi.org/10.1073/PNAS.1105175108.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yahiro K, Akazawa Y, Nakano M, Suzuki H, Hisatune J, Isomoto H, Sap J, Noda M, Moss J, Hirayama T. Helicobacter pylori VacA induces apoptosis by accumulation of connexin 43 in autophagic vesicles via a Rac1/ERK-dependent pathway. Cell Death Discov. 2015;28(1):1503. https://doi.org/10.1038/cddiscovery.2015.35.

    Article  CAS  Google Scholar 

  72. Willhite DC, Blanke SR. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol. 2004;6(2):143–54. https://doi.org/10.1046/j.1462-5822.2003.00347.x.

    Article  CAS  PubMed  Google Scholar 

  73. Ki MR, Lee HR, Goo MJ, Hong IH, Do SH, Jeong DH, Yang HJ, Yuan DW, Park JK, Jeong KS. Differential regulation of ERK1/2 and p38 MAP kinases in VacA-induced apoptosis of gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):635–47. https://doi.org/10.1152/AJPGI.00281.2007.

    Article  Google Scholar 

  74. Liu N, Zhou N, Chai N, Liu X, Jiang H, Wu Q, Li Q. Helicobacter pylori promotes angiogenesis depending on Wnt/beta-catenin-mediated vascular endothelial growth factor via the cyclooxygenase-2 pathway in gastric cancer. BMC Cancer. 2016;16:321. https://doi.org/10.1186/S12885-016-2351-9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Caputo R, Tuccillo C, Manzo BA, Zarrilli R, Tortora G, Del Vecchio Blanco C, Ricci V, Ciardiello F, Romano M. Helicobacter pylori VacA toxin up-regulates vascular endothelial growth factor expression in MKN 28 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism. Clin Cancer Res. 2003;9(6):2015–21.

    CAS  PubMed  Google Scholar 

  76. Song X, Xin N, Wang W, Zhao C. Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget. 2015;6(34):35579–88. https://doi.org/10.18632/oncotarget.5758.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nakayama M, et al. Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J Biol Chem. 2009;284(3):1612–9. https://doi.org/10.1074/jbc.M806981200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sato F, Meltzer SJ. CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer. 2006;106(3):483–93. https://doi.org/10.1002/cncr.21657.

    Article  CAS  PubMed  Google Scholar 

  79. Wu WM, Yang YS, Peng LH. Microbiota in the stomach: new insights. J Dig Dis. 2014;15(2):54–61. https://doi.org/10.1111/1751-2980.12116.

    Article  PubMed  Google Scholar 

  80. Polk DB, Peek RM. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer. 2010;10(6):403–14. https://doi.org/10.1038/NRC2857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Uemura N, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345(11):784–9. https://doi.org/10.1056/NEJMOA001999.

    Article  CAS  PubMed  Google Scholar 

  82. Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. Clin Microbiol Infect. 2014;20(2):1–26. https://doi.org/10.1111/j.1469-0691.2009.03031.x.

    Article  Google Scholar 

  83. Wang J, Zhao L, Yan H, Che J, Huihui L, Jun W, Liu B, Cao B. A meta-analysis and systematic review on the association between human papillomavirus (types 16 and 18) infection and esophageal cancer worldwide. PLoS One. 2016;11(7):0159140. https://doi.org/10.1371/JOURNAL.PONE.0159140.

    Article  Google Scholar 

  84. Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep. 2014;4:4202. https://doi.org/10.1038/srep04202.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dias-Jácome E, Libânio D, Borges-Canha M, Galaghar A, Pimentel-Nunes P. Gastric microbiota and carcinogenesis: the role of non-Helicobacter pylori bacteria - a systematic review. Rev Esp Enferm Dig. 2016;108(9):530–40. https://doi.org/10.17235/reed.2016.4261/2016.

    Article  CAS  PubMed  Google Scholar 

  86. De Witte C, Schulz C, Smet A, Malfertheiner P, Haesebrouck F. Other Helicobacters and gastric microbiota. Helicobacter. 2016;21:62–8. https://doi.org/10.1111/HEL.12343.

    Article  PubMed  Google Scholar 

  87. Sheh A, Fox JG. The role of the gastrointestinal microbiome. Gut Microbes. 2013;4(6):505–31. https://doi.org/10.4161/gmic.26205.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Engstrand L, Lindberg M. Helicobacter pylori and the gastric microbiota. Best Pract Res Clin Gastroenterol. 2013;27(1):39–45. https://doi.org/10.1016/J.BPG.2013.03.016.

    Article  CAS  PubMed  Google Scholar 

  89. Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage. J Cell Sci. 2007;120(11):1944–52. https://doi.org/10.1242/JCS.03455.

    Article  CAS  PubMed  Google Scholar 

  90. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206. https://doi.org/10.1016/j.chom.2013.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu R, Wu S, Zhang Y-G, Xia Y, Liu X, Zheng Y, Chen H, Schaefer LK, Zhou Z, Bissonnette M, Li L, Sun J. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis. 2014;3(6):e105. https://doi.org/10.1038/ONCSIS.2014.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gur C, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack Europe PMC Funders Group. Immunity. 2015;42(2):344–55. https://doi.org/10.1016/j.immuni.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vinasco K, Mitchell HM, Kaakoush NO, Castaño-Rodríguez N. Microbial carcinogenesis: lactic acid bacteria in gastric cancer. Biochim Biophys Acta Rev Cancer. 2019;1872(2). https://doi.org/10.1016/j.bbcan.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  94. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. https://doi.org/10.1126/SCIENCE.123.3191.309.

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297–308. https://doi.org/10.1016/j.ccr.2012.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fall PJ, Szerlip HM. Lactic acidosis: from sour milk to septic shock. J Intensive Care Med. 2005;20(5):255–71. https://doi.org/10.1177/0885066605278644.

    Article  PubMed  Google Scholar 

  97. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, Mueller-Klieser W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000;60(4):916–21.

    CAS  PubMed  Google Scholar 

  98. Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller-Klieser W. Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol. 1997;150(2):409–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;51(2):349–53. https://doi.org/10.1016/s0360-3016(01)01630-3.

    Article  CAS  PubMed  Google Scholar 

  100. Forsythe SJ, Cole JA. Nitrite accumulation during anaerobic nitrate reduction by binary suspensions of bacteria isolated from the achlorhydric stomach. J Gen Microbiol. 1987;133(7):1845–9. https://doi.org/10.1099/00221287-133-7-1845.

    Article  CAS  PubMed  Google Scholar 

  101. Calmels S, Béréziat JC, Ohshima H, Bartsch H. Bacterial formation of N-nitroso compounds from administered precursors in the rat stomach after omeprazole-induced achlorhydria. Carcinogenesis. 1991;12(3):435–9. https://doi.org/10.1093/carcin/12.3.435.

    Article  CAS  PubMed  Google Scholar 

  102. Jones RM, Mercante JW, Neish AS. Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem. 2012;19(10):1519–29. https://doi.org/10.2174/092986712799828283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ohta K, Kawano R, Ito N. Lactic acid bacteria convert human fibroblasts to multipotent cells. PLoS One. 2012;7(12):e51866. https://doi.org/10.1371/JOURNAL.PONE.0051866.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mendling W, Palmeira-de-Oliveira A, Biber S, Prasauskas V. An update on the role of Atopobium vaginae in bacterial vaginosis: what to consider when choosing a treatment? A mini review. Arch Gynecol Obstet. 2019;300(1):1–6. https://doi.org/10.1007/S00404-019-05142-8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vandana UK. Linking gut microbiota with human diseases. Bioinformation. 2020;16(2):196–208. https://doi.org/10.6026/97320630016196.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Halazonetis TD. Constitutively active DNA damage checkpoint pathways as the driving force for the high frequency of p53 mutations in human cancer. DNA Repair (Amst). 2004;3(8–9):1057–62. https://doi.org/10.1016/J.DNAREP.2004.03.036.

    Article  CAS  PubMed  Google Scholar 

  107. Yao Y, Dai W. Genomic instability and cancer. J Carcinog Mutagen. 2014;5:1000165. https://doi.org/10.4172/2157-2518.1000165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Frisan T. Bacterial genotoxins: the long journey to the nucleus of mammalian cells. Biochim Biophys Acta Biomembr. 2016;1858(3):567–75. https://doi.org/10.1016/J.BBAMEM.2015.08.016.

    Article  CAS  Google Scholar 

  109. Lara-Tejero M, Galán JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science. 2000;290(5490):354–7. https://doi.org/10.1126/SCIENCE.290.5490.354.

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Islami F, Kamangar F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res. 2008;1(5):329–38. https://doi.org/10.1158/1940-6207.CAPR-08-0109.

    Article  CAS  Google Scholar 

  111. Nie S, Chen T, Yang X, Huai P, Lu M. Association of Helicobacter pylori infection with esophageal adenocarcinoma and squamous cell carcinoma: a meta-analysis. Dis Esophagus. 2014;27(7):645–53. https://doi.org/10.1111/dote.12194.

    Article  CAS  PubMed  Google Scholar 

  112. Xie FJ, et al. Helicobacter pylori infection and esophageal cancer risk: an updated meta-analysis. World J Gastroenterol. 2013;19(36):6098–107. https://doi.org/10.3748/wjg.v19.i36.6098.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhuo X, Zhang Y, Wang Y, Zhuo W, Zhu Y, Zhang X. Helicobacter pylori infection and oesophageal cancer risk: association studies via evidence-based meta-analyses. Clin Oncol. 2008;20(10):757–62. https://doi.org/10.1016/j.clon.2008.07.005.

    Article  Google Scholar 

  114. Rokkas T, Pistiolas D, Sechopoulos P, Robotis I, Margantinis G. Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. Clin Gastroenterol Hepatol. 2007;5(12):1413–7, 1417.e1-2. https://doi.org/10.1016/j.cgh.2007.08.010.

    Article  PubMed  Google Scholar 

  115. Smolka AJ, Schubert ML. Helicobacter pylori-induced changes in gastric acid secretion and upper gastrointestinal disease. Curr Top Microbiol Immunol. 2017;400:227–52. https://doi.org/10.1007/978-3-319-50520-6_10.

    Article  CAS  PubMed  Google Scholar 

  116. Thrift AP. The epidemic of oesophageal carcinoma: where are we now? Cancer Epidemiol. 2016;41:88–95. https://doi.org/10.1016/j.canep.2016.01.013.

    Article  PubMed  Google Scholar 

  117. Cani PD, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72. https://doi.org/10.2337/db06-1491.

    Article  CAS  PubMed  Google Scholar 

  118. Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res. 2012;18(8):2138–44. https://doi.org/10.1158/1078-0432.CCR-11-0934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee SJ, Park H, Chang JH, Conklin JL. Generation of nitric oxide in the opossum lower esophageal sphincter during physiological experimentation. Yonsei Med J. 2006;47(2):223–9. https://doi.org/10.3349/ymj.2006.47.2.223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Man SM. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol. 2011;8(12):669–85. https://doi.org/10.1038/nrgastro.2011.191.

    Article  CAS  PubMed  Google Scholar 

  121. Zaidi AH, Kelly LA, Kreft RE, Barlek M, Omstead AN, Matsui D, Boyd NH, Gazarik KE, Heit MI, Nistico L, Kasi PM, Spirk TL, Byers B, Lloyd EJ, Landreneau RJ, Jobe BA. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 2016;16:52. https://doi.org/10.1186/S12885-016-2093-8.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cheng WT, Kantilal HK, Davamani F. The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation. Malays J Med Sci. 2020;27(4):9–21. https://doi.org/10.21315/mjms2020.27.4.2.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li D, He R, Hou G, Ming W, Fan T, Chen L, Zhang L, Jiang W, Wang W, Lu Z, Feng H, Geng Q. Characterization of the esophageal microbiota and prediction of the metabolic pathways involved in esophageal cancer. Front Cell Infect Microbiol. 2020;10:268. https://doi.org/10.3389/FCIMB.2020.00268/FULL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou H, Yuan Y, Wang H, Xiang W, Li S, Zheng H, Wen Y, Ming Y, Chen L, Zhou J. Gut microbiota: a potential target for cancer interventions. Cancer Manag Res. 2021;13:8281–96. https://doi.org/10.2147/CMAR.S328249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Available at https://www.rapidmicrobiology.com/news/biohit-launches-new-quick-test-to-help-streamline-gastroscopy-referrals.

  126. Yeh JM, Hur C, Ward Z, Schrag D, Goldie SJ. Gastric adenocarcinoma screening and prevention in the era of new biomarker and endoscopic technologies: a cost-effectiveness analysis. Gut. 2016;65(4):563–74. https://doi.org/10.1136/gutjnl-2014-308588.

    Article  CAS  PubMed  Google Scholar 

  127. Reza Sivandzadeh G, Amiri Zadeh Fard S, Zahmatkesh A, Hossein Anbardar M, Lankarani KB, Author C. Value of serological biomarker panel in diagnosis of atrophic gastritis and Helicobacter pylori infection. Middle East J Dig Dis. 2023;15(1):37–44. https://doi.org/10.34172/mejdd.2022.318.

    Article  Google Scholar 

  128. Zagari RM, Rabitti S, Greenwood DC, Eusebi LH, Vestito A, Bazzoli F. Systematic review with meta-analysis: diagnostic performance of the combination of pepsinogen, gastrin-17 and anti-Helicobacter pylori antibodies serum assays for the diagnosis of atrophic gastritis. Aliment Pharmacol Ther. 2017;46(7):657–67. https://doi.org/10.1111/apt.14248.

    Article  CAS  PubMed  Google Scholar 

  129. Butcher LD, Hartog G, Ernst PB, Crowe SE. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell Mol Gastroenterol Hepatol. 2017;3(3):316–22. https://doi.org/10.1016/j.jcmgh.2017.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Dorf J, Pryczynicz A, Matowicka-Karna J, Zaręba K, Żukowski P, Zalewska A, Maciejczyk M. Could circulating biomarkers of nitrosative stress and protein glycoxidation be useful in patients with gastric cancer? Front Oncol. 2023;13:1213802. https://doi.org/10.3389/fonc.2023.1213802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Balendra V, et al. High-salt diet exacerbates H pylori infection and increases gastric cancer risks. J Pers Med. 2023;13(9):1325. https://doi.org/10.3390/jpm13091325.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sharafutdinov I, et al. A single-nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe. 2023;31(8):1345-1358.e6. https://doi.org/10.1016/j.chom.2023.06.016.

    Article  CAS  PubMed  Google Scholar 

  133. Yan P, Cheng M, Wang L, Zhao W. A ferroptosis-related gene in Helicobacter pylori infection, SOCS1, serves as a potential prognostic biomarker and corresponds with tumor immune infiltration in stomach adenocarcinoma: in silico approach. Int Immunopharmacol. 2023;119:110263. https://doi.org/10.1016/j.intimp.2023.110263.

    Article  CAS  PubMed  Google Scholar 

  134. Kamarehei F, Saidijam M, Taherkhani A. Prognostic biomarkers and molecular pathways mediating Helicobacter pylori–induced gastric cancer: a network-biology approach. Genomics Inform. 2023;21(1):e8. https://doi.org/10.5808/gi.22072.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ma L, Liu Y, Wang Y, Jang Y, Lu J, Feng H, Ye S, Liu Y. Identification of PTPN20 as an innate immunity-related gene in gastric cancer with Helicobacter pylori infection. Front Immunol. 2023;14:1212692. https://doi.org/10.3389/fimmu.2023.1212692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    CAS  PubMed  Google Scholar 

  137. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.

    PubMed  PubMed Central  Google Scholar 

  138. Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living Mycobacterium bovis (strain BCG). Science. 1970;170(3963):1217–8. https://doi.org/10.1126/SCIENCE.170.3963.1217.

    Article  ADS  CAS  PubMed  Google Scholar 

  139. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17(5):271–85. https://doi.org/10.1038/NRC.2017.13.

    Article  CAS  PubMed  Google Scholar 

  140. Nayak RR, Turnbaugh PJ. Mirror, mirror on the wall: which microbiomes will help heal them all? BMC Med. 2016;14:72. https://doi.org/10.1186/S12916-016-0622-6.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Fessler JL, Gajewski TF. The microbiota: a new variable impacting cancer treatment outcomes. Clin Cancer Res. 2017;23(13):3229–31. https://doi.org/10.1158/1078-0432.CCR-17-0864.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12. https://doi.org/10.1038/NRC3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Iida N, Dzutsev A, Stewart AC, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai R-M, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70. https://doi.org/10.1126/SCIENCE.1240527.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ghiringhelli F, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34(2):336–44. https://doi.org/10.1002/eji.200324181.

    Article  CAS  PubMed  Google Scholar 

  145. Schiavoni G, et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 2011;71(3):768–78. https://doi.org/10.1158/0008-5472.CAN-10-2788.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  146. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachat YE, Woerther P-L, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson C, Doré J, Kroemer G, Lepage P, Gomperts Boneca I, Ghiringhelli F, Zitvogel L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6. https://doi.org/10.1126/SCIENCE.1240537.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  147. Daillère R, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–43. https://doi.org/10.1016/j.immuni.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  148. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh L-A, Mani S, Redinbo MR. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330(6005):831–5. https://doi.org/10.1126/SCIENCE.1191175.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Routy B, Le Chatelier E, Derosa L, Duong CPM, Tidjani Alou M, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Remon Masip J, Naltet C, Solenn B, Coureche K, Corentin R, Hira R, Florence L, Nathalie G, Benoit Q, Nicolas P, Bernhard R, Minard-Colin V, Gonin P, Soria J-C, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7. https://doi.org/10.1126/SCIENCE.AAN3706.

    Article  ADS  CAS  PubMed  Google Scholar 

  150. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LV, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. https://doi.org/10.1126/SCIENCE.AAN4236.

    Article  ADS  CAS  PubMed  Google Scholar 

  151. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8. https://doi.org/10.1126/SCIENCE.AAO3290.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen Q, Wang C, Chen G, Hu Q, Gu Z. Delivery strategies for immune checkpoint blockade. Adv Healthc Mater. 2018;7(20):e1800424. https://doi.org/10.1002/ADHM.201800424.

    Article  PubMed  Google Scholar 

  153. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Bérard M, Nigou J, Opolon P, Eggermont A, Woerther P-L, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. https://doi.org/10.1126/SCIENCE.AAD1329.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  154. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9. https://doi.org/10.1126/SCIENCE.AAC4255.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shi Y, Zheng H, Guo Z, Deng R, Yu W, Song Y, Ding S. Effect of Helicobacter pylori on immunotherapy is gaining more attention. Helicobacter. 2022;27(5):e12925. https://doi.org/10.1111/HEL.12925.

    Article  CAS  PubMed  Google Scholar 

  156. Che H, Xiong Q, Ma J, Chen S, Wu H, Xu H, Hou B. Association of Helicobacter pylori infection with survival outcomes in advanced gastric cancer patients treated with immune checkpoint inhibitors. BMC Cancer. 2022;22(1):904. https://doi.org/10.1186/S12885-022-10004-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sunakawa Y, Matoba R, Inoue E, Sakamoto Y. Genomic pathway of gut microbiome to predict efficacy of nivolumab in advanced gastric cancer: DELIVER trial (JACCRO GC-08). J Clin Oncol. 2021;39:161–161. https://doi.org/10.1200/JCO.2021.39.3_SUPPL.161.

    Article  Google Scholar 

  158. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMOA1504030.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Chaput N, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368–79. https://doi.org/10.1093/ANNONC/MDX108.

    Article  CAS  PubMed  Google Scholar 

  160. Frankel AE, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia (United States). 2017;19(10):848–55. https://doi.org/10.1016/J.NEO.2017.08.004.

    Article  CAS  Google Scholar 

  161. Zhang Y, Cheng S, Zou H, Han Z, Xie T, Zhang B, Dai D, Yin X, Liang Y, Kou Y, Tan Y, Shen L, Peng Z. Correlation of the gut microbiome and immune-related adverse events in gastrointestinal cancer patients treated with immune checkpoint inhibitors. Front Cell Infect Microbiol. 2023;13:1099063. https://doi.org/10.3389/FCIMB.2023.1099063/FULL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr. 2001;73:365S–373S. https://doi.org/10.1093/ajcn/73.2.365s.

    Article  CAS  PubMed  Google Scholar 

  163. Marco ML, Pavan S, Kleerebezem M. Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol. 2006;17(2):204–10. https://doi.org/10.1016/j.copbio.2006.02.005.

    Article  CAS  PubMed  Google Scholar 

  164. Kasmi G, Andoni R, Mano V, Kraja D, Muço E, Kasmi I. Streptococcus bovis isolated in haemoculture a signal of malignant lesion of the colon. Clin Lab. 2011;57(11–12):1007–9.

    PubMed  Google Scholar 

  165. Nakamura J, Kubota Y, Miyaoka M, Saitoh T, Mizuno F, Benno Y. Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces. Microbiol Immunol. 2002;46(7):487–90. https://doi.org/10.1111/j.1348-0421.2002.tb02723.x.

    Article  CAS  PubMed  Google Scholar 

  166. Strofilas A. Association of Helicobacter pylori infection and colon cancer. J Clin Med Res. 2012;4(3):172–6. https://doi.org/10.4021/jocmr880w.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chang JH, Shim YY, Cha SK, Reaney MJT, Chee KM. Effect of lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J Med Microbiol. 2012;61(3):361–8. https://doi.org/10.1099/JMM.0.035154-0.

    Article  CAS  PubMed  Google Scholar 

  168. Foo NP, et al. Probiotics prevent the development of 1,2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J Agric Food Chem. 2011;59(24):13337–45. https://doi.org/10.1021/JF203444D.

    Article  CAS  PubMed  Google Scholar 

  169. Bhandari A, Crowe SE. Helicobacter pylori in gastric malignancies. Curr Gastroenterol Rep. 2012;14(6):489–96. https://doi.org/10.1007/S11894-012-0296-Y.

    Article  PubMed  Google Scholar 

  170. Zhu XY, Liu F. Probiotics as an adjuvant treatment in Helicobacter pylori eradication therapy. J Dig Dis. 2017;18(4):195–202. https://doi.org/10.1111/1751-2980.12466.

    Article  PubMed  Google Scholar 

  171. Tong JL, Ran ZH, Shen J, Zhang CX, Xiao SD. Meta-analysis: The effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther. 2007;25(2):155–68. https://doi.org/10.1111/j.1365-2036.2006.03179.x.

    Article  CAS  PubMed  Google Scholar 

  172. Losurdo G, Cubisino R, Barone M, Principi M, Leandro G, Ierardi E, Di Leo A. Probiotic monotherapy and Helicobacter pylori eradication: A systematic review with pooled-data analysis. World J Gastroenterol. 2018;24(1):139–49. https://doi.org/10.3748/wjg.v24.i1.139.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zhu R, et al. Meta-analysis of the efficacy of probiotics in Helicobacter pylori eradication therapy. World J Gastroenterol. 2014;20(47):18013–21. https://doi.org/10.3748/wjg.v20.i47.18013.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kokkola A, Valle J, Haapiainen R, Sipponen P, Kivilaakso E, Puolakkainen P. Helicobacter pylori infection in young patients with gastric carcinoma. Scand J Gastroenterol. 1996;31(7):643–7. https://doi.org/10.3109/00365529609009143.

    Article  CAS  PubMed  Google Scholar 

  175. Gisbert JP, Calvet X. Review article: Common misconceptions in the management of Helicobacter pylori-associated gastric MALT-lymphoma. Aliment Pharmacol Ther. 2011;34(9):1047–62. https://doi.org/10.1111/j.1365-2036.2011.04839.x.

    Article  CAS  PubMed  Google Scholar 

  176. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65. https://doi.org/10.1038/NRGASTRO.2017.20.

    Article  CAS  PubMed  Google Scholar 

  177. Sokol H, Gut TA. The microbiota: an underestimated actor in radiation-induced lesions? Gut. 2018;67(1):1–2. https://doi.org/10.1136/gutjnl-2017-314279.

    Article  CAS  PubMed  Google Scholar 

  178. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science. 2018;359(6382):1366–70. https://doi.org/10.1126/SCIENCE.AAR6918.

    Article  ADS  CAS  PubMed  Google Scholar 

  179. Chang CW, Liu CY, Lee CC, Huang YH, Li LH, Chiang Chiau JS, Wang TE, Chu CH, Shih SC, Tsai TH, Chen YJ. Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front Microbiol. 2018;9:983. https://doi.org/10.3389/FMICB.2018.00983/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Riehl TE, et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut. 2019;68(6):1003–13. https://doi.org/10.1136/GUTJNL-2018-316226.

    Article  CAS  PubMed  Google Scholar 

  181. Zhang W, Zhu YH, Yang GY, Liu X, Xia B, Hu X, Su JH, Wang JF. Lactobacillus rhamnosus GG affects microbiota and suppresses autophagy in the intestines of pigs challenged with Salmonella infantis. Front Microbiol. 2018;8:2705. https://doi.org/10.3389/FMICB.2017.02705/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Vanderhoof JA, Young R. Probiotics in the United States. Clin Infect Dis. 2008;46:S67–72. https://doi.org/10.1086/523339.

    Article  PubMed  Google Scholar 

  183. Redman MG, Ward EJ, Phillips RS. The efficacy and safety of probiotics in people with cancer: a systematic review. Ann Oncol. 2014;25(10):1919–29. https://doi.org/10.1093/ANNONC/MDU106.

    Article  CAS  PubMed  Google Scholar 

  184. Mego M, Holec V, Drgona L, Hainova K, Ciernikova S, Zajac V. Probiotic bacteria in cancer patients undergoing chemotherapy and radiation therapy. Complement Ther Med. 2013;21(6):712–23. https://doi.org/10.1016/J.CTIM.2013.08.018.

    Article  PubMed  Google Scholar 

  185. van Nood E, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15. https://doi.org/10.1056/NEJMOA1205037.

    Article  PubMed  Google Scholar 

  186. Khoruts A, et al. Inflammatory bowel disease affects the outcome of fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Gastroenterol Hepatol. 2016;14(10):1433–8. https://doi.org/10.1016/J.CGH.2016.02.018.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Kakihana K, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128(16):2083–8. https://doi.org/10.1182/BLOOD-2016-05-717652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bel S, et al. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF-/- mice. Proc Natl Acad Sci USA. 2014;111(13):4964–9. https://doi.org/10.1073/PNAS.1319114111.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Federica Mascaretti, Salman Haider, Chiara Amoroso, and Michele Ghidini. The first draft of the manuscript was written by Federica Mascaretti and Salman Haider, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Michele Ghidini.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascaretti, F., Haider, S., Amoroso, C. et al. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Canc (2024). https://doi.org/10.1007/s12029-024-01021-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12029-024-01021-x

Keywords

Navigation